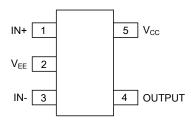


SINGLE GENERAL PURPOSE LOW VOLTAGE COMPARATOR

Description

The AZV331 is a low voltage 2.5V to 5.5V, single comparator, which has a very low supply current of $60\mu\text{A}$, making the part an excellent choice for portable electronic systems. The device is pin-for-pin compatible replacement of the LMV331.

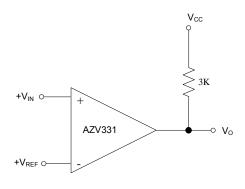
The AZV331 is built with BiCMOS process with bipolar input and output stages for improved noise performance. It is a cost-effective solution for portable consumer products where space, low voltage, low power and price are the primary specification in circuit design.

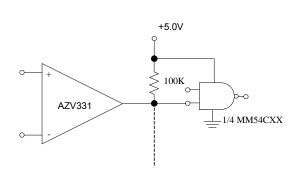

The AZV331 is available in space saving SC-70-5 and SOT-23-5 packages, the SC-70-5 is approximately half the size of the SOT-23-5.

Features

- Guaranteed 2.5V to 5.5V Performance
- Industrial Temperature Range: -40°C to 85°C
- Low Supply Current: 60µA Typical
- Input Common Mode Voltage Range Includes Ground
- Low Output Saturation Voltage 200mV Typical
- Open Collector Output for Maxima Flexibility
- Space Saving SC-70-5 and SOT-23-5 Packages

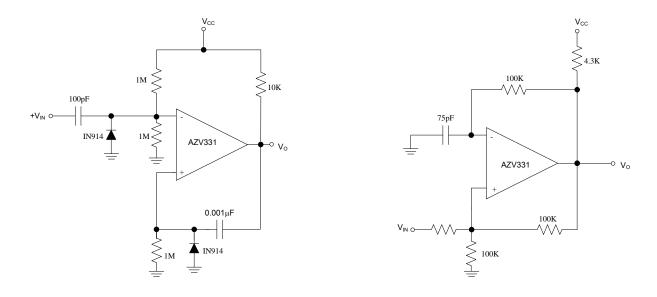
Pin Assignments


KS/K Package (SC-70-5/SOT-23-5)

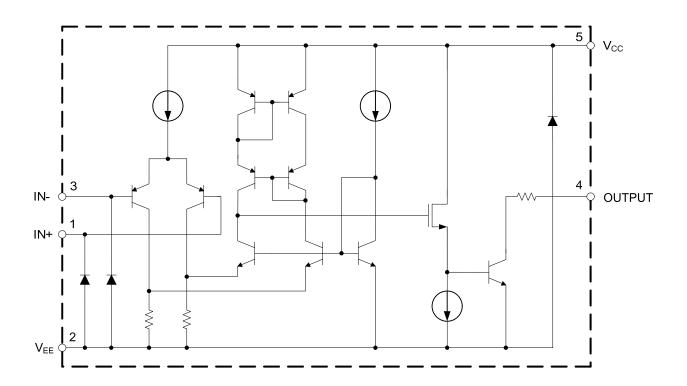

Applications

- Notebook and PDA
- Low Power, Low Voltage Applications
- General Purpose Portable Devices
- Mobile Communication
- Battery-Powered Systems

Typical Applications Circuit


Basic Comparator

Driving CMOS/TTL


Typical Applications Circuit (Cont.)

One Shot Multivibrator

Squarewave Oscillator

Functional Block Diagram

AZV331

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
V _{CC}	Power Supply Voltage	6	V
T _J	Operation Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-65 to 150	°C
T _{LEAD}	Lead Temperature (Soldering, 10 Seconds)	260	°C
	ESD (Machine Model)	300	V
	ESD (Human Body Model)	4000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	2.5	5.5	V
T _A	Ambient Operating Temperature Range	-40	85	°C

Electrical Characteristics

AZV331-2.7V DC Electrical Characteristics (Limits in standard typeface are guaranteed for T_A =25°C, V_{CC} =2.7V, V_{EE} =0V, R_L =5.1k Ω connected to V_{CC} and V_{CM} =0, **bold** typeface applies over full temperature ranges, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
.,	L Off			1.7	7	
Vos	Input Offset Voltage				9	mV
TCVos	Input Offset Voltage Average Drift			5		μV/°C
	Input Piga Current	I _{IN} + or I _{IN} - with output in		10	250	20
l _B	Input Bias Current	linear range, V _{CM} =0V			400	nA
	land Official Comment			5	50	4
I _{IO}	Input Offset Current	I _{IN} + - I _{IN} -, V _{CM} =0V			150	nA
.,	Out out the Malling	1 4 1 4		200		
V _{SAT}	Saturation Voltage	I _{SINK} ≤1mA			500	mV
I _{SINK}	Output Sink Current	V _O ≤1.5V	5	23		mA
V _{CM}	Input Common-Mode Voltage Range		-0.1		2	V
	Supply Current			40	100	
I _{CC}	Supply Current				150	μA
I _{LEAKAGE}	Output Leakage Current			0.003		μA

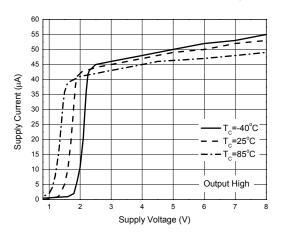
AZV331-2.7V AC Electrical Characteristics (All limits are guaranteed for T_A =25°C, V_{CC} =2.7V, V_{EE} =0V, R_L =5.1k Ω connected to V_{CC} and V_{CM} =0, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
_	Decreasion Delevities to Levi	Input Overdrive=10mV		1000		
T _{PHL}	Propagation Delay (High to Low)	Input Overdrive=100mV		350		ns
_	Decreasion Delevitation Link	Input Overdrive=10mV		500		
T_PLH	Propagation Delay (Low to High)	Input Overdrive=100mV		400		ns

Electrical Characteristics (Cont.)

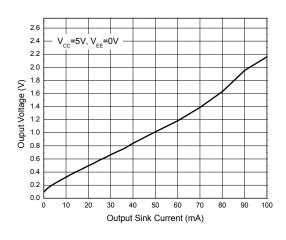
AZV331-5V DC Electrical Characteristics (Limits in standard typeface are guaranteed for V_A =25°C, V_{CC} =5V, V_{EE} =0V, V_{CC} =5V, V_{CC} =5V, V_{CC} =5V, V_{CC} =5V, V_{CC} =6V, V_{CC} =6V, V_{CC} =7V, V_{CC} =7V, V_{CC} =8V, V_{C

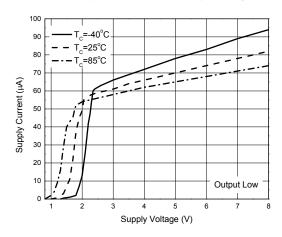
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
.,	110"11			1.7	7	
Vos	Input Offset Voltage			9		mV
TCVos	Input Offset Voltage Average Drift			5		μV/°C
	Input Dice Current	I _{IN} + or I _{IN} - with output in		25	250	, n A
I _B	Input Bias Current	linear range, V _{CM} =0V			400	nA
	land Official Comment			2	50	nA
I _{IO}	Input Offset Current	I_{IN} + - I_{IN} -, V_{CM} =0 V			150	
.,	0 1 1 1 1 1			200	400	.,
V_{SAT}	Saturation Voltage	I _{SINK} ≤4mA			500	mV
I _{SINK}	Output Sink Current	V _O ≤1.5V	10	84		mA
V _{CM}	Input Common-Mode Voltage Range		-0.1		4.2	V
A _V	Voltage Gain		20	50		V/mV
	Complex Company			60	120	
Icc	Supply Current				150	μA
I _{LEAKAGE}	Output Leakage Current			0.003		μA


AZV331-5V AC Electrical Characteristics (All limits are guaranteed for T_A =25°C, V_{CC} =5V, V_{EE} =0V, R_L =5.1k Ω connected to V_{CC} and V_{CM} =0, unless otherwise specified.)

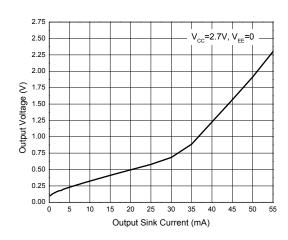
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
-	Door continue Dalace (Hinda to Lace)	Input Overdrive=10mV		600		
T _{PHL}	Propagation Delay (High to Low)	Input Overdrive=100mV		200		ns
-	Barrier Bala (for follow)	Input Overdrive=10mV		450		
T_PLH	Propagation Delay (Low to High)	Input Overdrive=100mV		300		ns

Performance Characteristics (@TA=25°C, unless otherwise specified.)

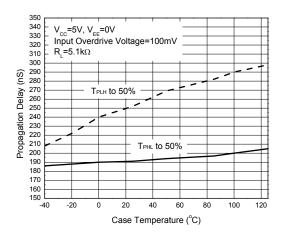

Supply Current vs. Supply Voltage

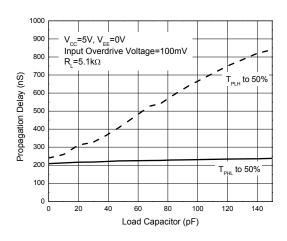

Supply Current vs. Temperature

Output Voltage vs. Output Sink Current

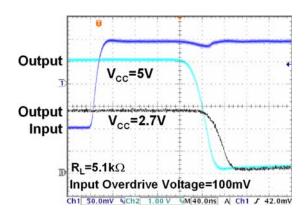

Supply Current vs. Supply Voltage

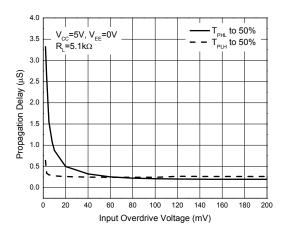
Supply Current vs. Temperature

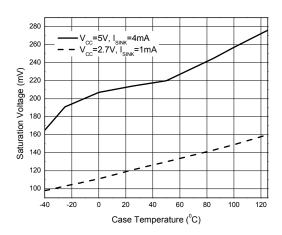

Output Voltage vs. Output Sink Current



Performance Characteristics (Cont. @TA=25°C, unless otherwise specified.)

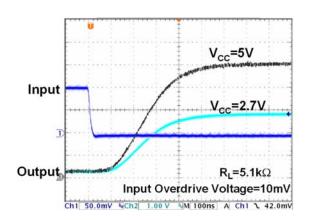

Propagation Delay vs. Temperature

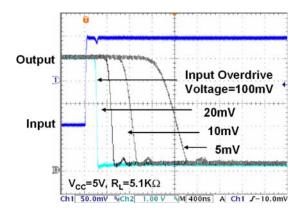

Propagation Delay vs. Load Capacitors


Response Time for Positive Transition

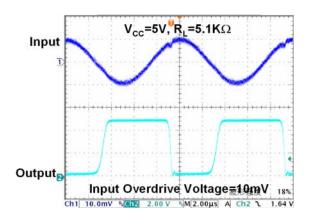
Propagation Delay vs. Input Overdrive Voltage

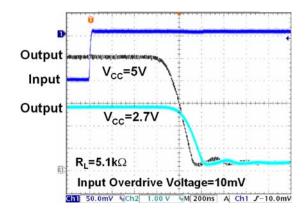
Saturation Voltage vs. Case Temperature

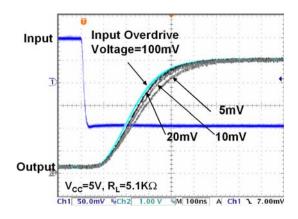

Response Time for Negative Transition

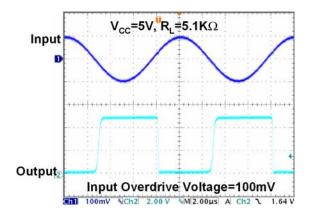


Performance Characteristics (Cont. @TA=25°C, unless otherwise specified.)


Response Time for Negative Transition

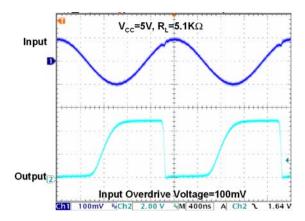

Response Time for Positive Transition

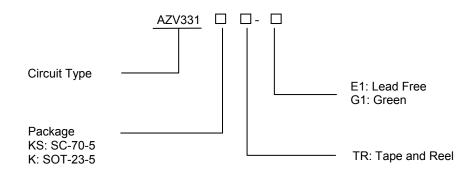

100kHz Response


Response Time for Positive Transition

Response Time for Negative Transition

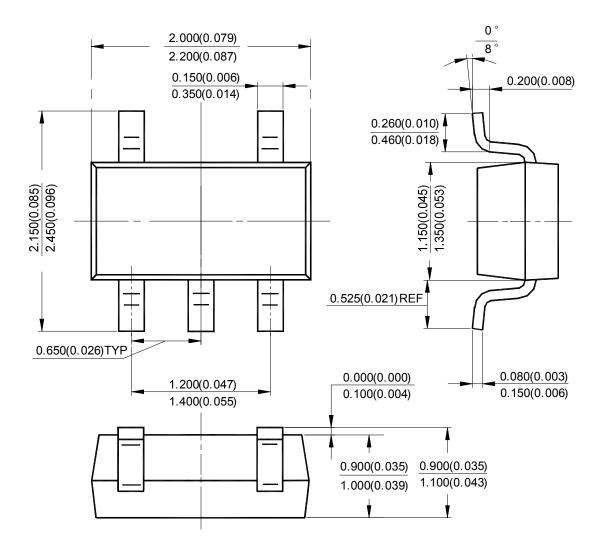
100kHz Response




Performance Characteristics (Cont. @T_A=25°C, unless otherwise specified.)

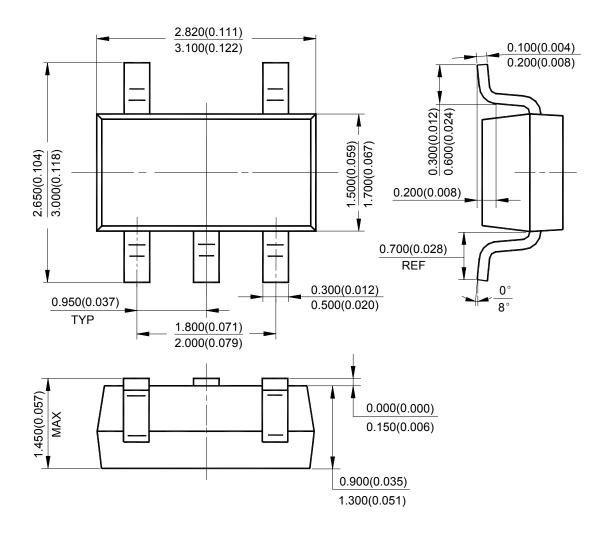
500kHz Response

Ordering Information

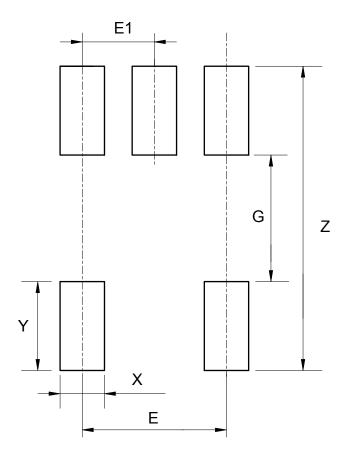

Bookogo	Temperature	Part N	umber	Marki	ng ID	Dooking Type
Package	Range	Lead Free	Green	Lead Free	Green	Packing Type
SC-70-5	-40 to 85°C	AZV331KSTR-E1	AZV331KSTR-G1	22	B2	Tape & Reel
SOT-23-5		AZV331KTR-E1	AZV331KTR-G1	E6S	G6S	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

Package Outline Dimensions (All dimensions in mm(inch).)

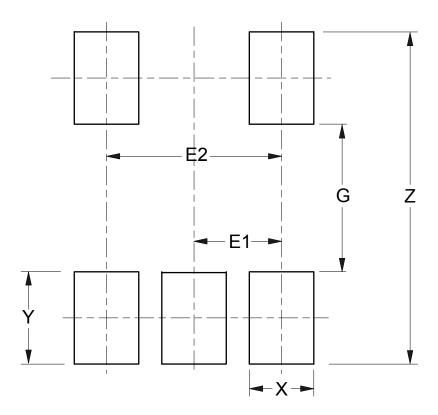

SC-70-5

Package Outline Dimensions (Cont. All dimensions in mm(inch).)


SOT-23-5

Suggested Pad Layout

SC-70-5



Dimensions	Z	G	X	Y	Е	E1
Difficusions	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	2.740/0.108	1.140/0.045	0.400/0.016	0.800/0.031	1.300/0.051	0.650/0.026

Suggested Pad Layout (Cont.)

SOT-23-5

Dimensions	Z	G	X	Y	E1	E2
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.600/0.142	1.600/0.063	0.700/0.028	1.000/0.039	0.950/0.037	1.900/0.075

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com