
DISCRETE SEMICONDUCTORS

DATA SHEET

BGM1011MMIC wideband amplifier

Preliminary specification

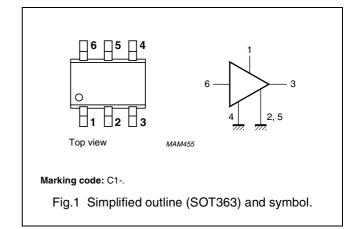
2002 Jan 14

BGM1011

FEATURES

- Internally matched to 50 Ω
- Very high gain (up to 37 dB at 2 Ghz)
- Sloped gain curve for optimal performance with output into lossy cable
- 14 dBm saturated output power at 1 GHz
- High linearity (23 dBm IP3_(out) at 1 GHz)
- · 40 dB isolation

APPLICATIONS


- · LNB IF amplifiers
- · Cable systems
- · General purpose.

DESCRIPTION

Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin SOT363 SMD plastic package.

PINNING

PIN	DESCRIPTION
1	V _S
2, 5	GND2
3	RF out
4	GND1
6	RF in

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
Vs	DC supply voltage		5	6	V
I _S	DC supply current		25.5	_	mA
s ₂₁ ²	insertion power gain	f = 1 GHz	30	_	dB
NF	noise figure	f = 1 GHz	4.7	_	dB
P _{L(sat)}	saturated load power	f = 1 GHz	13.8	_	dBm

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Vs	DC supply voltage	RF input AC coupled	_	6	V
Is	supply current		_	35	mA
P _{tot}	total power dissipation	T _s ≤ 90 °C	_	200	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	operating junction temperature		_	150	°C
P_D	maximum drive power		_	0	dBm

CAUTION

This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.

Philips Semiconductors Preliminary specification

MMIC wideband amplifier

BGM1011

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-s}	thermal resistance from junction to solder point	$P_{tot} = 200 \text{ mW}; T_s \le 90 ^{\circ}\text{C}$	300	K/W

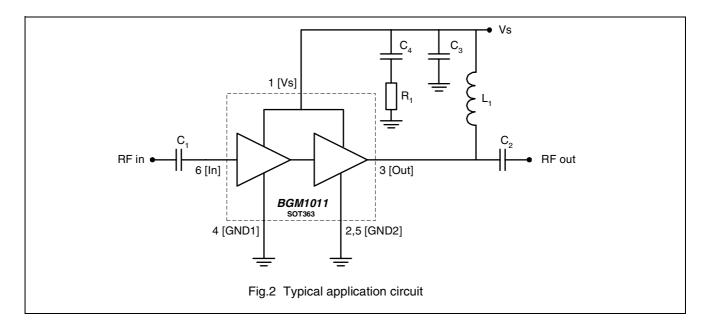
CHARACTERISTICS

 V_S = 5 V; I_S = 25.5 mA; T_j = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Is	supply current		20	25.5	32	mA
s ₂₁ ²	insertion power gain	f = 100 MHz	_	25	_	dB
		f = 1 GHz	_	30	_	dB
		f = 1.8 GHz	_	35	_	dB
		f = 2.2 GHz	_	37	_	dB
		f = 2.6 GHz	_	32	_	dB
		f = 3 GHz	_	28	_	dB
R _{L IN}	return losses input	f = 1 GHz	_	11	_	dB
		f = 2.2 GHz	_	8	_	dB
R _{L OUT}	return losses output	f = 1 GHz	_	18	_	dB
		f = 2.2 GHz	_	12	_	dB
NF	noise figure	f = 1 GHz	_	4.7	_	dB
		f = 2.2 GHz	_	4.6	_	dB
BW	bandwidth	at $ s_{21} ^2$ –3 dB below flat gain at 1 GHz	_	2.9	_	GHz
K	stability factor	f = 1 GHz	_	1.8	_	_
		f = 2.2 GHz	_	0.9	_	_
P _{L(sat)}	saturated load power	f = 1 GHz	_	13.8	_	dBm
		f = 2.2 GHz	_	10.8	_	dBm
P _{L 1 dB}	load power	at 1 dB gain compression; f = 1 GHz	_	12.2	_	dBm
		at 1 dB gain compression; f = 2.2 GHz	_	7.7	_	dBm
IP3 _(in)	input intercept point	f = 1 GHz	_	-7	_	dBm
		f = 2.2 GHz	_	-20	_	dBm
IP3 _(out)	output intercept point	f = 1 GHz	1-	23	_	dBm
		f = 2.2 GHz	_	16	_	dBm

BGM1011

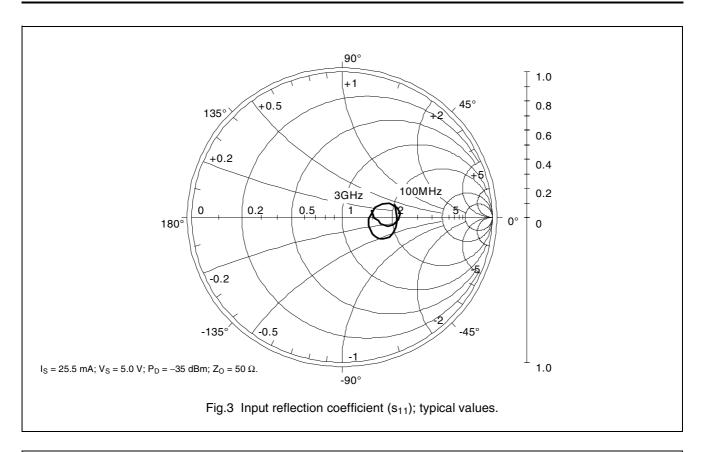
APPLICATION INFORMATION

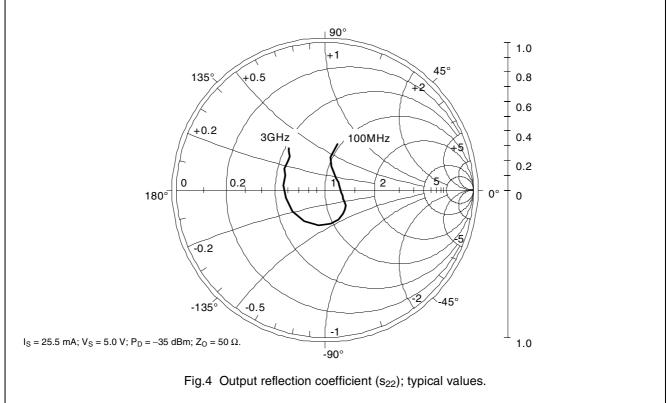

Figure 2 shows a typical application circuit for the BGM1011 MMIC. The device is internally matched to 50 Ω , and therefore does not need any external matching. The value of the input and output DC blocking capacitors C1, C2 should be not more than 100 pF for applications above 100 MHz. Their values can be used to fine tune the input and output impedance. However, when the device is operated below 100 MHz, the capacitor value should be increased.

The nominal value of the RF choke, L1 is 100 nH. At frequencies below 100 MHz this value should be increased to 200 nH. At frequencies between 1 and 3 GHz a much lower value must be used (e.g. 18 nH) to improve return losses. For optimal results, a good quality chip inductor such as the TDK MLG 1608 (0603), or a wire-wound SMD type should be chosen.

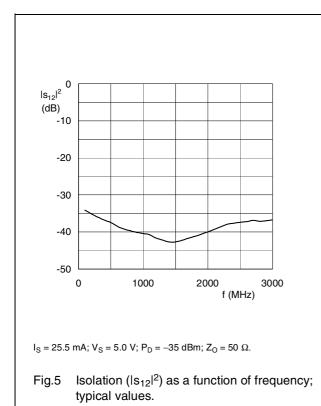
Capacitor, C4 and resistor, R1 are added for optimal supply decoupling.

Both the RF choke, L1 and the 22 nF supply decoupling capacitor, C3 should be located as closely as possible to the MMIC.

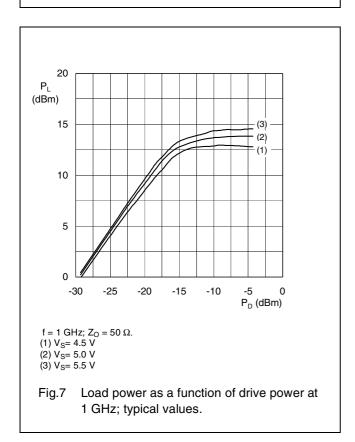

Separate paths must be used for the ground planes of the ground pins GND1, GND2, and these paths must be as short as possible. When using vias, use multiple vias per pin in order to limit ground path inductance.

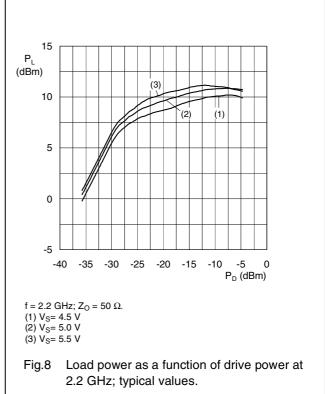


List of components used for the typical application; an amplifier for LNB IF output.


COMPONENT	DESCRIPTION	VALUE	DIMENSIONS.
C1, C2	multilayer ceramic chip capacitor	100 pF	0603
C3	multilayer ceramic chip capacitor	22 nF	0603
C4	multilayer ceramic chip capacitor	5.6 pF	0603
R1	SMD resistor	10 Ω	0603
L1	SMD inductor	10 to 200 nH	0603

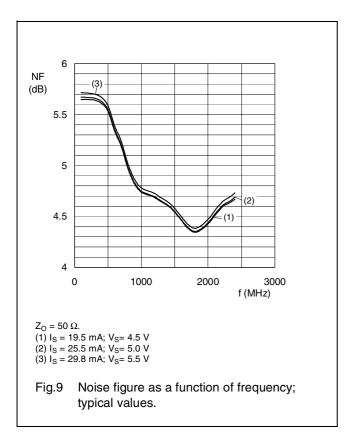
BGM1011




BGM1011

40 (3) (dB) 35 (1) 30 25 20 0 1000 2000 3000 f (MHz)
$$\begin{split} P_D &= -35 \text{ dBm}; \ Z_O = 50 \ \Omega. \\ \text{(1)} \ I_S &= 19.5 \ \text{mA}; \ V_S = 4.5 \ \text{V} \\ \text{(2)} \ I_S &= 25.5 \ \text{mA}; \ V_S = 5.0 \ \text{V} \end{split}$$
(3) $I_S = 29.8 \text{ mA}$; $V_S = 5.5 \text{ V}$ Fig.6 Insertion gain (Is₂₁I²) as a function of

frequency; typical values.



Philips Semiconductors Preliminary specification

MMIC wideband amplifier

BGM1011

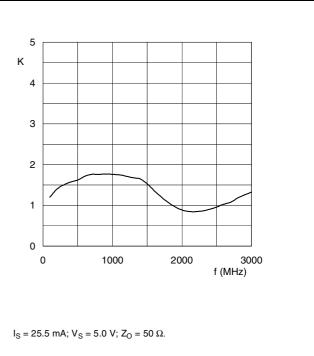


Fig.10 Stability factor as a function of frequency; typical values.

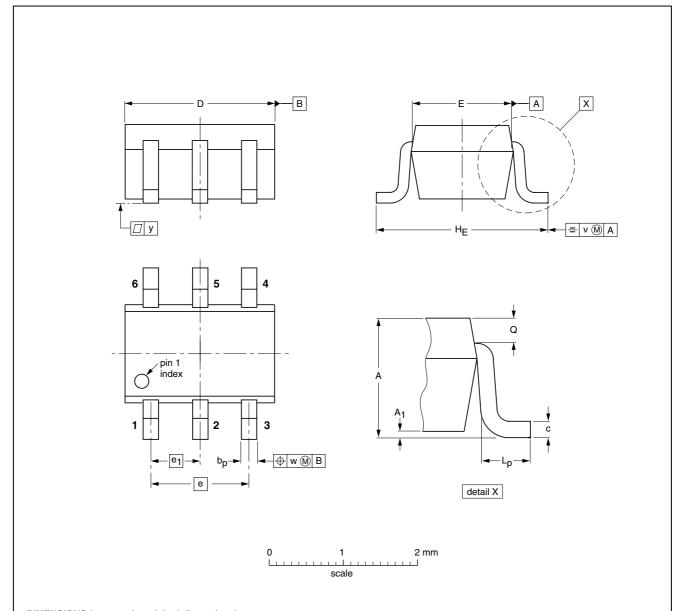
2002 Jan 14

7

Scattering parameters: V_S = 5.0 V; I_S = 25.5 mA; P_D = -35 dBm; Z_O = 50 Ω ; T_{amb} = 25 $^{\circ}$ C

MMIC wideband amplifier

BGM1011


۷	FACTOR	1.2	1.4	1.6	1.7	1.8	1.7	1.7	1.6	1.4	1.1	6.0	6.0	6.0	1.0	1.2	1.3
	ANGLE (deg)	75.129	80.749	63.715	30.828	1.087	-15.72	-25.66	-33.18	-44.12	-65.13	-100.6	-146.8	173.89	151.71	136.52	130.13
S ₂₂	MAGNITUDE (ratio)	0.32582	0.22343	0.13121	0.10301	0.10619	0.12032	0.13665	0.15786	0.18642	0.21778	0.24156	0.26347	0.28137	0.30823	0.33170	0.37422
	ANGLE (deg)	16.631	3.391	-9.722	-9.388	-5.884	-0.816	9.692	23.979	33.26	44.601	42.512	49.659	46.727	52.913	50.499	55.48
S 12	MAGNITUDE (ratio)	0.01974	0.017526	0.014492	0.011953	0.010391	0.009534	0.008254	0.007313	0.007684	0.008713	0.010019	0.011761	0.013121	0.013803	0.013946	0.014548
	ANGLE (deg)	24.366	12.011	4.008	-1.373	-7.408	-14.9	-24.67	-36.83	-52.69	-73.19	-100.2	-131.3	-160.5	178.27	164.33	154.16
S 21	MAGNITUDE (ratio)	17.83811	18.52172	20.26048	4.7	13.8	29.73953	35.11364	42.13907	50.8261	60.12684	67.60676	67.08784	56.50393	41.27266	31.24721	23.98115
	ANGLE(d eg)	13.342	0.954	-11.09	-19.36	-26.32	-29.66	-31.1	-24.6	-4.547	16.758	16.643	4.096	-8.496	-10.05	-1.301	12.698
S ₁₁	MAGNITUDE (ratio)	0.36264	0.36374	0.36404	0.35160	0.32818	0.29729	0.25490	0.20591	0.18024	0.23153	0.32983	0.39031	0.34466	0.25915	0.21573	0.20270
	f (MHz)	100	200	400	009	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000

BGM1011

PACKAGE OUTLINE

Plastic surface mounted package; 6 leads

SOT363

DIMENSIONS (mm are the original dimensions)

UNIT	A	A ₁ max	bp	С	D	E	е	e ₁	HE	Lp	Q	v	w	у	
mm	1.1 0.8	0.1	0.30 0.20	0.25 0.10	2.2 1.8	1.35 1.15	1.3	0.65	2.2 2.0	0.45 0.15	0.25 0.15	0.2	0.2	0.1	

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT363			SC-88		97-02-28

Philips Semiconductors Preliminary specification

MMIC wideband amplifier

BGM1011

DATA SHEET STATUS

DATA SHEET STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.