High Voltage 4 Channel LED Driver

General Description

The RT8560A is a 60V 4-channel LED driver capable of delivering 30 mA to each channel with 15 LEDs (3.6V per diode) total 60 LEDs with one driver. The RT8560A is a current mode boost converter opearated at 1 MHz switching frequency, wide $\mathrm{V}_{\text {IN }}$ range covers from 6 V to 40 V and the on-chip current switch is rated at 1.5A.

The PWM output voltage loop selects and regulates the LED pin with the highest voltage string to 0.9 V allowing voltage mismatches between LED strings. The RT8560A automatically detects and disconnects any unconnected and/or broken strings during operation from PWM loop to prevent $\mathrm{V}_{\text {out }}$ from over voltage.

The 3\% matched LED currents on all channels are simply programmed with a resistor or a current sink. Both analog dimming and digitally controlled PWM dimming are supported by RT8560A. Analog dimming is linearly controlled by an external voltage. With an on-chip output clampping amplifier and a $200 \mathrm{k} \Omega$ resistor, PWM dimming signal is easily low-pass filtered to an analog dimming signal with one external capacitor for noise-free PWM dimming. A very high contrast ratio true digital PWM dimming can be achieved by driving EN pin to PWM shutdown the chip or by driving ACTL pin.

Other protecting features include programmable PWM output over voltage protection, LED curren limit, PWM switch current limit and thermal shutdown. The RT8560A is packaged with a tiny footprint package of WQFN-20L 4×4 packages.

Pin Configurations

Features

- High Voltage : Vin up to 40 V , V $\mathrm{V}_{\text {out }}$ up to 60V, Driving up to $60 \times 3.6 \mathrm{~V}$ LEDs (15 each channel)
- Channel Current Programmabe 4mA to 30mA and Matched to 3\% Accuracy
- Current Mode PWM 1MHz Boost Converter
- Easy Analog and Digital Dimming Control
- Programmable Soft Start
- Automatic Detecting Unconnected and/or Broken Channel
- Programmable Over Voltage Protection
- Disconnects LED in Digital Dimming : Providing High Accuracy Digital Dimming by PWM at ACTL Pin or EN Pin
- VIN Under Voltage Lockout
- Over Temperature Protection
- Current Limiting Protection
- Small 20-Lead WQFN Package
- RoHS Compliant and Halogen Free

Applications

- UMPC and Notebook Computer Backlight
- GPS, Portable DVD Backlight
- Desk Lights and Room Lighting

Ordering Information

Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Typical Application Circuit

Figure 1. 1MHz, 20mA Full Scale Current Digital PWM Dimming Control

Figure 2. $1 \mathrm{MHz}, 20 \mathrm{~mA}$ Full Scale Current Analog Dimming Control

Figure 3. 1MHz, 20mA Full Scale Current PWM to Analog Dimming Control

Figure 4. Wide Range VIN Application by Connecting VCC1 to LCD Driver Power AVDD

Function Block Diagram

Functional Pin Description

Pin Number	Pin Name	Pin Function
$\begin{gathered} 1,2,3,19,20, \\ 21 \text { (Exposed Pad) } \\ \hline \end{gathered}$	GND	Ground pin of the chip. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
4, 5	SW	PWM boost converter switch node.
6	VCC2	Bipolar power switch base current supply. Typical beta of the power NPN switch is approximately 70. VCC2 can be connected either to VCC1 or to a separate lower voltage, as low as 3 V , for better system efficiency and/or heat concern. A good bypass is necessary.
7	VCC1	Power supply of the chip. For good bypass, a low ESR capacitor is required.
8	RISET	A resistor or a current from DAC on this pin programs the full LED current.
9	ACTL	Analog/Digital dimming control. When using analog dimming, $\operatorname{lLED}=20 \mathrm{~mA} \times \frac{5.36 \mathrm{k}}{\mathrm{R}_{\text {ISET }}}$ for $\mathrm{VACTL} \geq 1.2 \mathrm{~V}$.
10	DCTL	By adding a $0.1 u F$ filtering capacitor on ACTL pin, the PWM dimming signal on DCTL pin will be averaged out and converted into analog dimming signal on ACTL pin.
11	EN	Chip enable pin, when low chip is in shutdown mode.
12	OVP	Over voltage protection. PWM boost converter turns off when $\mathrm{V}_{\text {OVP }}$ goes higher than 2.5 V .
13	SS	Soft start pin, a capacitor of at least 10 nF is required for soft start.
14	VC	PWM boost converter loop compensation node.
18, 17, 16, 15	LED1, LED2, LED3, LED4	Channel 1 to Channel 4 LED current sink. Leave the pin unconnected if not used.

Absolute Maximum Ratings (Note 1)

- Supply Voltage, VCC1, VCC2 42V
- SW Pin Voltage at Switching Off 65 V
- LED1, LED2, LED3, LED4 Pin 25V
- EN Pin Voltage 20V
- RISET Pin Voltage 4 V
- ACTL, DCTL, OVP, SS, VC Pins Voltage 8 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ WQFN-20L 4x4 1.852W
- Package Thermal Resistance (Note 2) WQFN-20L $4 \times 4, \theta_{J A}$ $54^{\circ} \mathrm{C} / \mathrm{W}$
WQFN-20L $4 \times 4, \theta_{\text {Jс }}$ $7^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3) HBM (Human Body Mode) 2kV
MM (Machine Mode) 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, VCC1, VCC2 6 V to 40 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC} 1}=17 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
VCC1 UVLO Threshold		Vuvio	$\mathrm{V}_{\mathrm{CC} 1}$ Rising	--	5.5	5.95	V
Supply Current		IVCC1	$\mathrm{VC} \leq 0.4 \mathrm{~V}$ (Switching off)	--	4	7	mA
Shutdown Current		ISHDN	$\mathrm{V}_{\mathrm{EN}} \leq 0.7 \mathrm{~V}$	--	12	--	$\mu \mathrm{A}$
EN Threshold	Logic-High Voltage	$\mathrm{V}_{\text {EN_H }}$		2	--	5	V
	Logic-Low Voltage	VEN_L		--	--	0.8	
ACTL Threshold	Logic-High Voltage	$\mathrm{V}_{\text {ACTL_H }}$		2	--	5	V
	Logic-Low Voltage	$\mathrm{V}_{\text {ACTL_L }}$		--	--	0.15	
EN Pin Input Current		IEN	$\mathrm{V}_{\mathrm{EN}} \leq 5 \mathrm{~V}$	--	--	2	$\mu \mathrm{A}$
LED Current Programming							
LED Current		ILED	$\begin{aligned} & 2 \mathrm{~V}>\mathrm{V}_{\mathrm{LED}}>0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{ISET}}=5.36 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{ACTL}}>1.28 \mathrm{~V} \end{aligned}$	19	20	21	mA
LED's Current Matching			$\begin{array}{\|l} \hline 2 \mathrm{~V}>\mathrm{V}_{\text {LED }}>0.7 \mathrm{~V}, \mathrm{R}_{\text {ISET }}=5.36 \mathrm{k} \Omega, \\ \mathrm{~V}_{\text {ACTL }}>1.28 \mathrm{~V}, \text { Calculating } \\ \left(\mathrm{I}_{(\mathrm{MAX})}-\mathrm{I}_{(\mathrm{MIN})} / \mathrm{I}_{\text {AVERAGE }} \times 100 \%\right) \\ \hline \end{array}$	--	--	3	\%
RISET Pin Voltage		$V_{\text {RISET }}$	$\mathrm{R}_{\text {ISET }}=5.36 \mathrm{k} \Omega, \mathrm{V}_{\text {ACTL }}>1.28 \mathrm{~V}$	--	1.21	--	V
Input Current of ACTL		$\mathrm{I}_{\text {ACTL }}$	$0.3 \mathrm{~V} \leq \mathrm{V}_{\text {ACTL }} \leq 1.2 \mathrm{~V}$	--	--	2	$\mu \mathrm{A}$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Threshold of ACTL	$\mathrm{V}_{\text {Acti }}$	LED Current Off	--	0.2	--	V
Input Current of DCTL	$\mathrm{I}_{\text {DCTL }}$	$0.3 \mathrm{~V} \leq \mathrm{V}_{\text {DCTL }} \leq 6 \mathrm{~V}$	--	--	1	$\mu \mathrm{A}$
PWM Boost Converter						
Switching Frequency			840	1000	1160	kHz
Maximum Duty Cycle			--	88	--	\%
Minimum On Time			--	200	--	ns
Regulated $\mathrm{V}_{\text {LED }}$		Highest Voltage LED String	--	0.9	--	V
Amplifier gm	GM		--	220	--	$\mu \mathrm{A} / \mathrm{V}$
Amplifier (gm) Output Current		$2.4 \mathrm{~V}>\mathrm{V}_{\mathrm{C}}>0.2 \mathrm{~V}$	--	± 30	--	$\mu \mathrm{A}$
VC Threshold		PWM Switch Off	--	0.7	--	V
SW On Voltage		$\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}$	--	0.4	--	V
SW Current Limit	ILIM		1.2	1.5	--	A
OVP \& Soft Start						
OVP Threshold	$\mathrm{V}_{\text {OVP }}$		--	2.5	--	V
OVP Input Current	lovp	$\mathrm{V}_{\mathrm{OVP}} \leq 2.5 \mathrm{~V}$	--	--	50	nA
Soft Start Current	ISS	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	--	7	--	$\mu \mathrm{A}$

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective four layers thermal conductivity test board of JEDEC 51-7 thermal measurement standard. The case point of θ_{Jc} is on the expose pad for the WQFN package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

LED Current vs. Temperature

Frequency vs. Input Voltage

Switch Off Current vs. Input Voltage

LED Current vs. ACTL Voltage

Shutdown Current vs. Input Voltage

SS Current vs. Temperature

OVP Voltage vs. Input Voltage

ACTL Voltage vs. Temperature

OVP Voltage vs. Temperature

Limit Current vs. Input Voltage

Power On from EN

Applications Information

The RT8560A is a current mode boost converter operated at 1 MHz to power up to 60 white LEDs with a programmable current for uniform intensity. The part integrates current sources, soft-start, and easy analog and digital dimming control. The protection block provides the circuitry for over-temperature, over-voltage and currentlimit protection features.

Input UVLO

The input operating voltage range of the RT8560A is 6 V to 40 V . An input capacitor at the VCC1 and VCC2 pin can reduce ripple voltage. It is recommended to use a ceramic 10uF or larger capacitance as the input capacitor. This IC provides an under voltage lockout (UVLO) function to enhance the stability when startup. The UVLO threshold of input rising voltage is around 5.5 V .

Power Sequence

Please refer to the below Figure 5 and 7. The recommended power-on sequence is that the PWM ready before EN and/or VIN ready. If not, the Soft-Start function will be disabled. As to power-off sequence, the EN/VIN must be pulled low within 10ms to prevent "Hard-Start" shown as Figure 7.

Figure 5. Power-On Sequence Control by EN

Figure 6. Power-On Sequence Control by VIN

Figure 7. To Prevent "Hard-Start" Sequence

Soft Start

The RT8560A employs a soft start feature to limit the inrush current. The soft-start circuit prevents the excessive inrush current and input voltage droop. The soft-start time is determined by capacitor C_{sS} connected to SS with a 7uA constant current to charge $\mathrm{C}_{\text {ss }}$. The value of capacitor $\mathrm{C}_{\text {ss }}$ is user-defined to satisfy designer' requirement.

LED connection

The RT8560A equips 4 channel LED divers and each channel supports up to 15 LEDs. The 4 LED strings are connected from VOUT to pin $15,16,17$ and 18 respectively. If one of the LED channel is not used, the LED pin should be opened directly.

Setting and Regulation of LED current

The LED current can be calculated by the following equation :
ILED $=20 \mathrm{~mA} \times \frac{5.36 \mathrm{k}}{\text { RISET }}$

Where
$\mathrm{V}_{\text {RISET }}$ is the voltage of the RISET pin (1.21V typ.) and the $\mathrm{R}_{\text {ISET }}$ is the resister between RISET pin and GND.

This setting is the reference for the LED current at LED14 and represents the sensed LED current for each string. The DC/DC converter regulates the LED current according to the setting.

Brightness Control

The RT8560A features both analog and digital dimming control. Analog dimming is linearly controlled by an external voltage ($0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{ACTL}}<1.2 \mathrm{~V}$). With an on-chip output clamping amplifier and a $200 \mathrm{k} \Omega$ resistor, PWM dimming signal is easily low-pass filtered to an analog dimming signal with one external capacitor for noise-free PWM dimming. A very high contrast ratio true digital PWM dimming can be achieved by driving ACTL pin with a PWM signal and suggest PWM frequency is from 200 Hz to 10kHz. Refer to Figure 8, the minimum dimming duty can be as low as 1% for the frequency range from 100 Hz to 300 Hz . For the dimming frequency from 300 Hz to 1 kHz , the duty is about 5%. If the frequency is increased to 1 kHz to 30 kHz , the duty will be about 10%.

Figure 8. LED Current vs. PWM Dimming Duty Cycle

Over Voltage Protection

The RT8560A equips over voltage protection (OVP) function. When the voltage at OVP pin reaches a threshold of approximately 2.5 V , the MOSFET drive output (SW) will turn "OFF". The MOSFET drive output (SW) will turn "ON" again once the voltage at OVP drops below the threshold of approximately 2.5 V .

So, the output voltage can be clamped at a certain voltage level and it can be calculated by the following equation :

VOUT, OVP $=2.5 \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
Where,
R1 and R2 are the voltage divider connected to OVP pin.
If at least one string is in normal operation, the controller will automatically ignore the open strings and continue to regulate the current for the string(s) in normal operation.

Current-limit Protection

The RT8560A can limit the peak current to achieve over current protection. The RT8560A senses the inductor current of on period that flows through SW pin. The duty cycle depend on current signal and internal slope compensation compared with error signal. The internal N -MOSFET will be turned off when the current signal is large than internal slope compensation. In the off period, the inductor current will be descended until the internal N -MOSFET is on by the oscillator.

Over Temperature Protection

The RT8560A has over temperature protection (OTP) function to prevent the excessive power dissipation from overheating. OTP will shut down the IC while junction temperature exceeds $150^{\circ} \mathrm{C}$. Main converter starts switching once the junction temperature is cooled approximately $20^{\circ} \mathrm{C}$.

Inductor Selection

The value of the output inductor (L), where the transition from discontinuous to continuous mode occurs is approximated by the following equation :
$L=\frac{(\text { VOUT }- \text { VIN }) \times \mathrm{VIN}^{2}}{2 \times \text { IOUT } \times \mathrm{f} \times \mathrm{VOUT}^{2}}$

Where
$\mathrm{V}_{\text {OUT }}=$ maximum output voltage.
$\mathrm{V}_{\mathrm{IN}}=$ minimum input voltage.
$f=$ operating frequency.
lout $=$ sum of current from all LED strings.
The boost converter operates in discontinuous mode over the entire input voltage range when the L1 inductor value is less than this value L. With an inductance greater than L, the converter operates in continuous mode at the minimum input voltage and may be discontinuous at higher voltages.

The inductor must be selected with a saturated current rating that is greater than the peak current provided by the following equation :
$\mathrm{IPEAK}=\frac{\mathrm{VOUT} \times \mathrm{IOUT}}{\eta \times \mathrm{VIN}}+\frac{\mathrm{V} \text { IN } \times \mathrm{T}}{2 \times \mathrm{L} \times}\left(\frac{\mathrm{VOUT}-\mathrm{VIN}}{\text { VOUT }}\right)$
Where,
η is the efficiency of the power converter.

Diode Selection

Schottky diode is a good choice for an asynchronous Boost converter due to the small forward voltage. However, power dissipation, reverse voltage rating and pulsating peak current are the important parameters for Schottky diode selection. Choose a suitable diode whose reverse voltage rating is greater than the maximum output voltage.

Capacitor Selection

The input capacitor reduces current spikes from the input supply and minimizes noise injection to the converter. For most applications, a 10uF ceramic capacitor is sufficient. A value higher or lower may be used depending on the noise level from the input supply and the input current to the converter.

It is recommended to choose a ceramic capacitor bases on the output voltage ripple requirements. The minimum value of the output capacitor $\mathrm{C}_{\text {out }}$ is approximately given by the following equation :

COUT $=\frac{(\text { VOUT }- \text { Vin }) \times \text { lout }}{\eta \times \text { VRIPPLE } \times \text { VOUT } \times f}$

Layout Guideline

PCB layout is very important for designing power switching converter circuits. Some recommended layout guides that should be strictly be followed are shown as follows :

- The power components L, D, CVIn, Cout1 and Cout2 must be placed as close as possible to reduce the ac current loop. The PCB trace between power components must be as short and wide as possible due to large current stream flows through these traces during operation.
- Place L and D connected to SW pin as close as possible. The trace should be short and wide as possible.
- It is recommended to place $\mathrm{C}_{\mathrm{Vcc}}$ and $\mathrm{C}_{\mathrm{Vcc}}$ close to $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$ pins.
- Pin14 is the compensation point to adjust system stability. Place the compensation components to pin14 as close as possible, no matter the compensation is RC or capacitance.

Figure 9. PCB Layout Guide

Outline Dimension

Pin \#1 ID and Tie Bar Mark Options
Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.150	0.300	0.006	0.012				
D	3.950	4.050	0.156	0.159				
D2	2.650	2.750	0.104	0.108				
E	3.950	4.050	0.156	0.159				
E2	2.650	2.750	0.104	0.108				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

W-Type 20L QFN 4x4 Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com

[^0]
[^0]: Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

