TOSHIBA **TA8159FN**

TENTATIVE

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

T A 8 1 5 9 F N

1.5V STEREO HEADPHONE AMPLIFIER

The TA8159FN is developed for play-back stereo headphone equipments (1.5V use). It is built in dual auto-reverse pre amplifiers, dual OCL power amplifiers, and a ripple filter.

Power amp. stage

OCL (Output Condenser-Less)

: $V_{no} = 48 \mu V_{rms}$ (Typ.) Low noise

Output Power : $P_0 = 6mW$ (Typ.)

(at $V_{CC} = 1.5V$, f = 1kHz, THD = 10%)

Excellent ripple rejection ratio : RR = 54dB (Typ.)

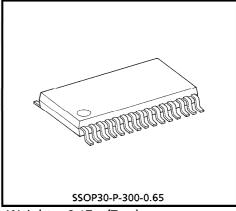
Voltage Gain : $G_V = 28dB \text{ (Typ.)}$

Built-in power amplifier mute.

Pre-amp. stage

Auto-reverse with F/R control switch

Low noise : $V_{ni} = 1.7 \mu V_{rms}$ (Typ.)

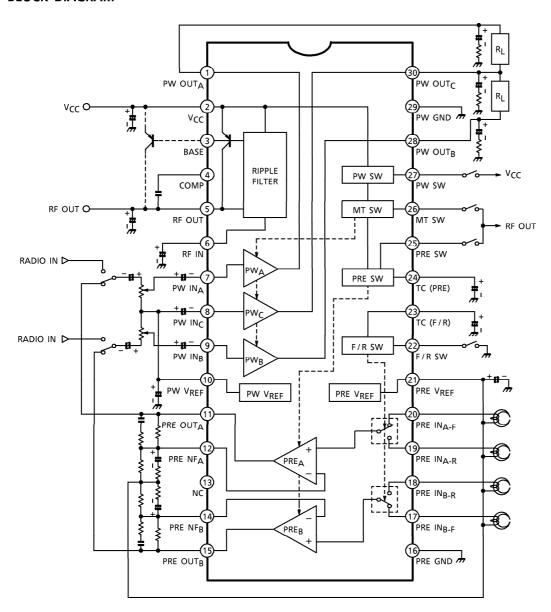

Input coupling condenser-less

Built-in input capacitor for reducing buzz noise

Built-in pre-amplifier mute

Total

- Built-in ripple filter
- Built-in power switch
- Operating supply voltage range : $V_{CC(opr)} = 0.9V \sim 2.2V$ (Ta = 25°C)


Weight : 0.17g (Typ.)

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

BLOCK DIAGRAM

TOSHIBA

TERMINAL EXPLANATION

Terminal voltage : Typical terminal voltage at no signal with test circuit. ($V_{CC} = 1.2V$, $T_a = 25^{\circ}C$)

TERMINAL FUNC		FUNCTION	INTERNAL CIRCUIT	TERMINAL
No.	NAME			VOLTAGE (V)
1	PW OUT _A	Output of power amplifier.	7 PW VREF CS XI.	0.6
28	PW OUT _B		24kΩ C	
30	PW OUT _C	Output of common power amplifier.		0.6
7	PW INA	Input of power amplifier.	24kΩ C	0.75
9	PW INB		PW V _{REF} SOO	
8	PW IN _C	Input of common power amplifier.	(3) (3)	0.75
2	V _{CC}	_	VCC RF OUT	1.2
3	BASE	Base bias of an external PNP transistor for ripple filter.		0.5
4	СОМР	Phase compensation of ripple filter circuit.		0.5
5	RF OUT	Ripple filter output. Ripple filter circuit supplies VREF circuit, Pre-amplifier circuit, and F/R switch circuit with power source.		1.13
6	RF IN	Ripple filter terminal.	₹ Vcc	1.13
10	PW V _{REF}	Reference voltage of power amplifier.	V _{CC} 2	0.75

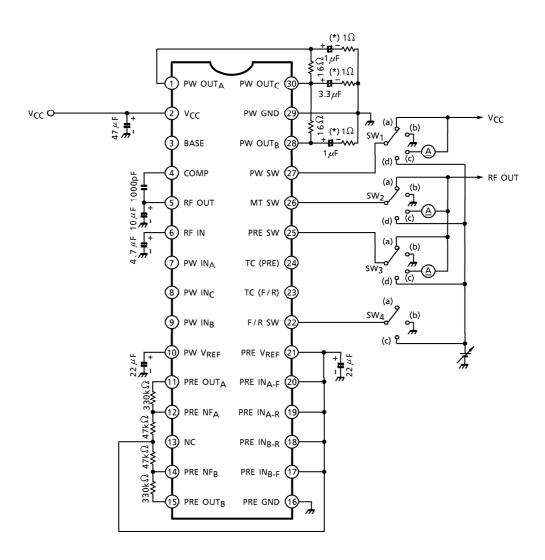
-	TERMINAL	FUNCTION	INTERNAL CIRCUIT	TERMINAL VOLTAGE (V)
No.	NAME			VOLIAGE (V)
11	PRE OUTA	Output of pre-amplifier.	RF OUT 5	0.5
15	PRE OUT _B		<u>`</u>	
12	PRE NFA	NF of pre-amplifier.	PRE V _{REF}	0.75
14	PRE NFB			
17	PRE IN _{B-F}	Forward input of pre-amplifier.	RF OUT	0.75
20	PRE IN _{A-F}	(at F/R SW : open)	Kueny Kueny	
18	PRE IN _{B-R}	Reverse input of pre-amplifier.		0.75
19	PRE IN _{A-R}	(at F/R SW : GND)	7	
13	NC	_	_	
16	PRE GND	_	_	0
21	PRE V _{REF}	Reference voltage of pre- amplifier.	RF OUT (5) (007) (107) (0.75
22	F/R SW	Forward / Reverse mode switch. (OPEN : Forward mode) (GND : Reverse mode)	7 VCC RF OUT - + 23	_
23	TC (F/R)	Smoothing terminal. In order to reduce a pop noise at F/R switching.	o reduce a pop	
24	TC (PRE)	Smoothing terminal. In order to reduce a pop noise at Pre-amplifier ON / OFF switching.	2 VCC	0.7
25	PRE SW	Pre-amplifier ON/OFF switch. (RF OUT : ON) (GND/OPEN : OFF)	RF OUT 20kΩ	_

	TERMINAL	FUNCTION	INTERNAL CIRCUIT	TERMINAL
No.	NAME			VOLTAGE (V)
26	MT SW	Muting switch for power amplifier. (RF OUT : MUTE OFF) (GND/OPEN : MUTE ON)	V _{RF} OUT V _{CC}	
27	PW SW	Power ON/OFF switch. (VCC : ON) GND/OPEN : OFF)	20 kg	
29	PW GND	_	_	0

MAXIMUM RATINGS (Ta = 25°C)

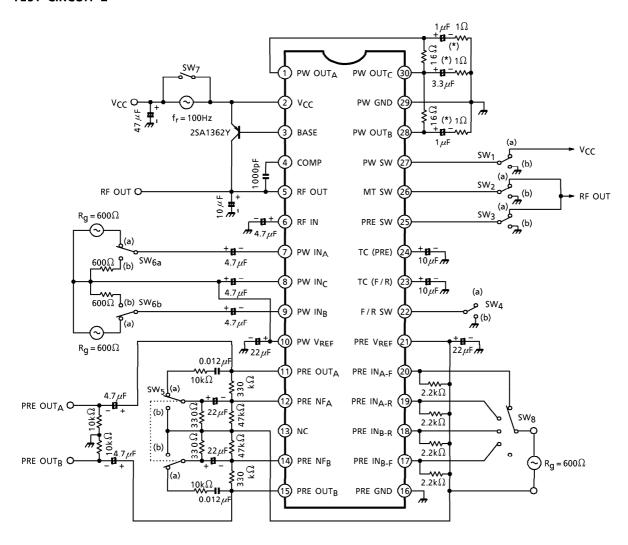
CHARACTE	RISTIC	SYMBOL	RATING	UNIT	
Supply Voltage		۷ _{CC}	3	V	
Output Current	Power	l _{o (peak)}	60	- mA	
Output Current	Ripple Filter	l _{RF}	5	IIIA	
Power Dissipation	(Note)	PD	550	mW	
Operating Tempe	rature	T _{opr} – 25~75		°C	
Storage Temperat	ure	T _{stg}	- 55∼150	°C	

(Note) : Derated above $Ta = 25^{\circ}C$ in the proportion of $4.4 \text{mW}/^{\circ}C$.


ELECTRICAL CHARACTERISTICS

Unless otherwise specified : V_{CC} = 1.2V, f = 1kHz, Ta = 25°C, SW₁ : a, SW₂ : a, SW₃ : a, SW₇ : on Power-amplifier stage : R_g = 600 Ω , R_L = 16 Ω , SW₃ : b, SW₆ : a Pre-amplifier stage : R_g = 2.2k Ω , R_L = 10k Ω , SW₂ : b, SW₅ : a

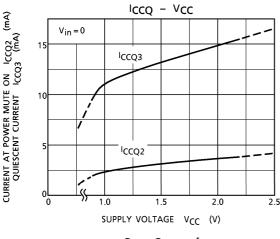
				<u> </u>					
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Quiescent Current		lccQ1		POWER OFF, SW ₁ : b, SW ₂ : b	_	0.1	5	μΑ	
		lccQ2	1	POWER Amp. OFF, SW2 : b	_	2.8	4.5		
		lccQ3		V _{in} = 0	_	13	16	mA	
Power-amplifier Stage	/oltage Gain G _V			V = 22dbV	26	28	30	dB	
	Channel Balance	СВ	2	$V_0 = -22 dBV$	_	0	1.5	ав	
	Output Power	Po		$V_{CC} = 1.5V$, $V_{in}(A) = V_{in}(B)$ THD = 10%	5	6	_	mW	
	Total Harmonic Distortion	THD ₁		$V_{CC} = 1V,$ $P_{O}(A) = P_{O}(B) = 1mW$		0.4	1.5	%	
	Output Noise Voltage	V _{no}		BPF: 20Hz~20kHz, SW ₆ : b	_	48	70	μ V $_{rms}$	

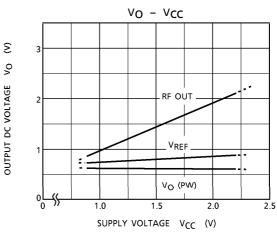

	CHARACTERISTIC		TEST CIR- CUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
fier Stage	Ripple Rejection Ratio	RR ₁		32dBV	$f_r = 100 \text{Hz}, V_r = -$ $f_6 : b, SW_7 : open$	45	54	_	
ampli	Cross Talk (CH-A/CH-B)	CT ₁		V _o = - 22d	BV	30	38	_	dB
Power-amplifier	Power Muting Attenuation	ATT ₁		V ₀ = -22d	BV, SW ₂ : a→b	70	83	_	
Stage	Output Voltage	V _{RF}		V _{CC} = 1V, I	RF = 0	0.88	0.92	_	V
Ripple Filter	Ripple Rejection Ratio	RR ₂	2	32dBV	CC = 1V, f _r = 100Hz, V _r = - 2dBV _{RF} = 30mA, SW ₇ : open		45	_	dB
	Open Loop Voltage Gain	G _{VO}	-	V _O = -22d	BV, SW ₅ : b	63	70	_	-15
	Closed Loop Voltage Gain	G _{VC}		V ₀ = -22dBV			34	_	dB
Stage	Maximum Output Voltage	V _{om}		THD = 1%		160	290	_	mV _{rms}
	Total Harmonic Distortion	THD ₂		$V_{CC} = 1V$, $V_o = 100 \text{mV}_{rms}$		1	0.06	0.3	%
Pre-amplifier	Equivalent Input Noise Voltage	V _{ni}	i 2	BPF: 20Hz~20kHz, SW8: open NAB (f=1kHz, G _V =34dB)		_	1.7	2.7	μ V $_{rms}$
-	Cross Talk (CH-A/CH-B)	CT ₂					61	_	
	Cross Talk (Forward / Reverse)	ст3		$V_0 = -22 dBV$		_	61	_	dB
	Pre Muting Attenuation	ATT ₂		V _o = −22dBV, SW ₃ : a→b		_	75	_	
Ро	wer ON Current	l ₂₇			$V_{10} \ge 0.5V$, $SW_1 : c$	5	-	_	μΑ
Ро	wer OFF Voltage	V ₂₇			$V_{10} \le 0.3V$, $SW_1 : d$	0		0.3	V
	wer Amp. Mute OFF rrent	¹ 26		V _{CC} = 0.9V	V ₃₀ ≧ 0.4V, SW ₂ : c	5	_	_	μΑ
	wer Amp. Mute ON Itage	V ₂₆	1		V ₃₀ ≤0.3V, SW ₂ : d	0	_	0.3	V
Pre	e. Amp. ON Current	l ₂₅			V ₂₄ ≥ 0.5V, SW ₃ : c	5	_	_	μΑ
Pre. Amp. OFF Voltage		V ₂₅			V ₂₄ ≤ 0.3V, SW ₃ : d	0		0.3	V
Re	verse Mode Voltage	V ₂₂			V ₂₃ ≥0.5V, SW ₄ : c	0	_	0.3	V

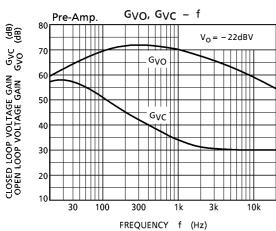
TEST CIRCUIT 1

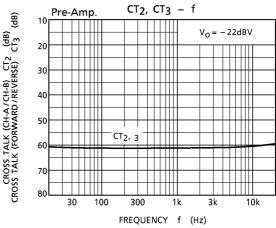
(*) Tantal Condenser

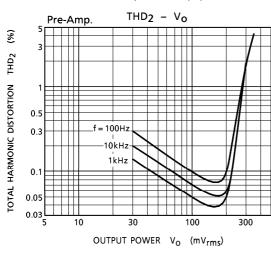
TEST CIRCUIT 2

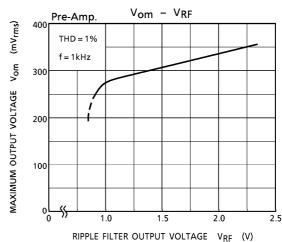


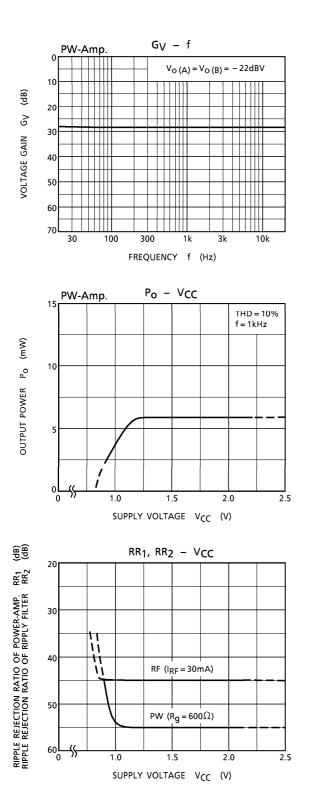

(*) Tantal Condenser

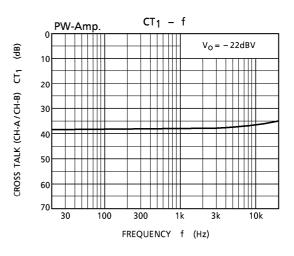

CHARACTERISTIC CURVES

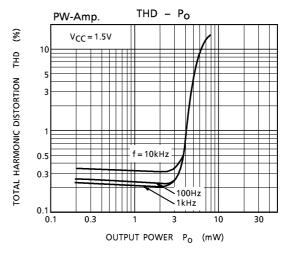

Unless otherwise specified : $V_{CC} = 1.2V$, Ta = 25°C, f = 1kHz

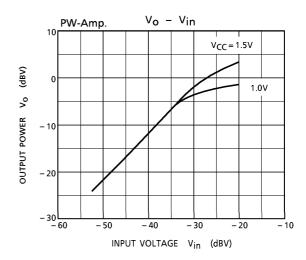

 $\begin{array}{ll} \text{Pre-Amplifier Stage} & : \ R_{\textbf{g}} = 2.2 k \Omega, \ R_{\textbf{L}} = 10 k \Omega \\ \text{Power Amplifier Stage} & : \ R_{\textbf{g}} = 600 \Omega, \ R_{\textbf{L}} = 16 \Omega \end{array}$

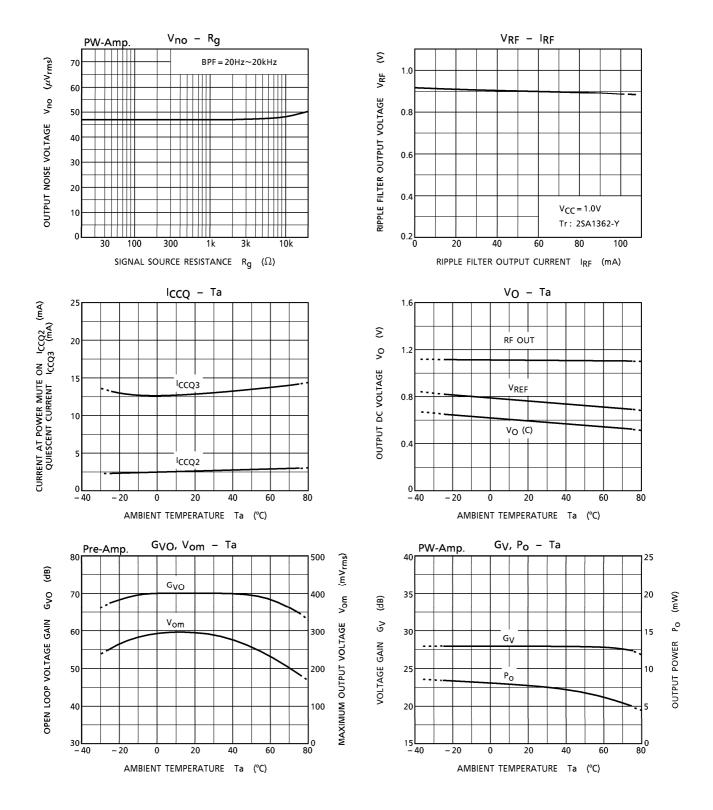


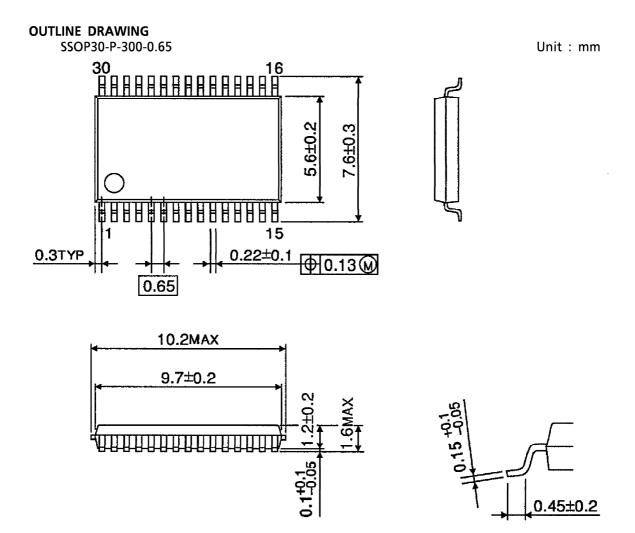












Weight: 0.17g (Typ.)