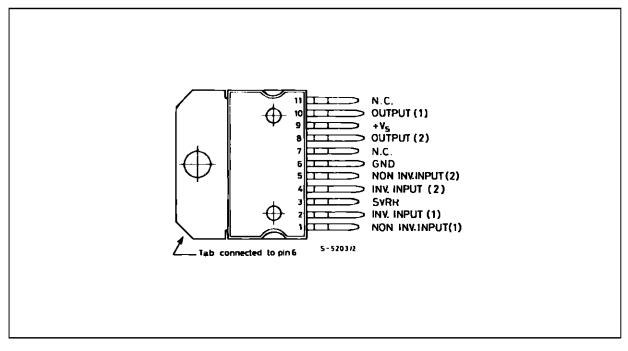
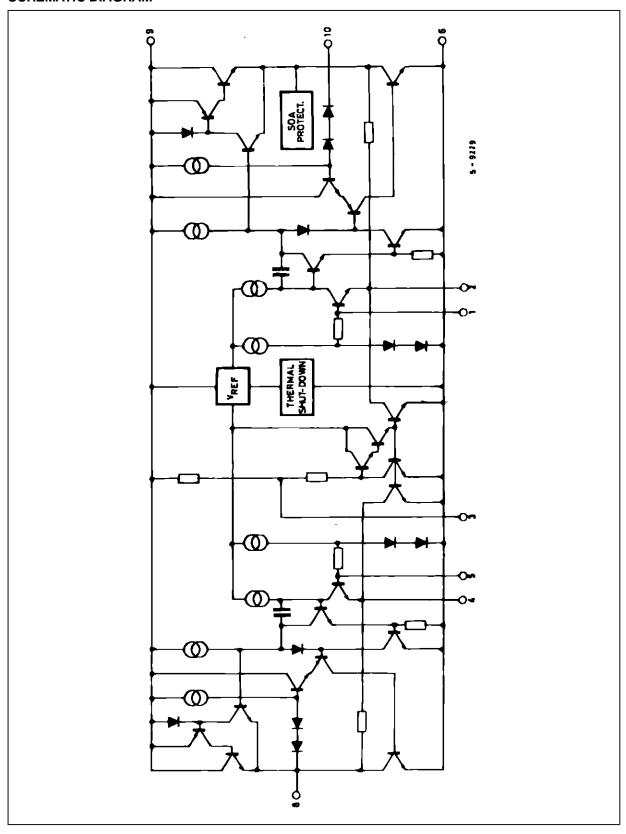


TDA2009A

10 +10W STEREO AMPLIFIER


- HIGH OUTPUT POWER (10 + 10W Min. @ D = 1%)
- HIGH CURRENT CAPABILITY (UP TO 3.5A)
- AC SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION
- SPACE AND COST SAVING: VERY LOW NUMBER OF EXTERNAL COMPONENTS AND SIMPLE MOUNTING THANKS TO THE MULTIWATT PACKAGE.

DESCRIPTION


The TDA2009A is class AB dual Hi-Fi Audio power amplifier assembled in Multiwatt [®] package, specially designed for high quality stereo application as Hi-Fi and music centers.

PIN CONNECTION

May 1995 1/12

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	28	V
Ιο	Output Peak Current (repetitive f ≥ 20 Hz)	3.5	Α
Ιο	Output Peak Current (non repetitive, t = 100 μs)	4.5	Α
P _{tot}	Power Dissipation at T _{case} = 90 °C	20	W
T _{stg,} T _j	Storage and Junction Temperature	- 40, + 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case Max.	3	°C/W

ELECTRICAL CHARACTERISTICS

(refer to the stereo application circuit, $T_{amb} = 25^{\circ}C$, $V_{S} = 24V$, $G_{V} = 36dB$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		8		28	V
Vo	Quiescent Output Voltage	V _s = 24V		11.5		V
I _d	Total Quiescent Drain Current	V _s = 24V		60	120	mA
Po	Output Power (each channel)	$\begin{array}{l} d=1\%,V_{s}=24V,f=1kHz\\ R_{L}=4\Omega\\ R_{L}=8\Omega\\ f=40Hzto12.5kHz\\ R_{L}=4\Omega\\ R_{L}=8\Omega\\ V_{s}=18V,f=1kHz\\ R_{L}=4\Omega\\ R_{L}=8\Omega\\ R_{L}=8\Omega \end{array}$	10 5	12.5 7 7		W W W W
d	Distortion (each channel)	$\begin{array}{lll} f = 1 \text{kHz}, V_s = 24 \text{V} \\ P_o = 0.1 \text{to} 7 \text{W} & R_L = 4 \Omega \\ P_o = 0.1 \text{to} 3.5 \text{W} & R_L = 8 \Omega \\ V_s = 18 \text{V} & R_c = 4 \Omega \\ P_o = 0.1 \text{to} 5 \text{W} & R_L = 4 \Omega \\ P_o = 0.1 \text{to} 2.5 \text{W} & R_L = 8 \Omega \end{array}$		0.2 0.1 0.2 0.1		% % %
СТ	Cross Talk (3)	$\label{eq:local_local_local} \begin{array}{l} R_L = \infty, \ R_g = 10 k \Omega \\ f = 1 k H z \\ f = 10 k H z \end{array}$		60 50		dB
Vi	Input Saturation Voltage (rms)		300			mV
Ri	Input Resistance	f = 1kHz, Non Inverting Input	70	200		kΩ
f∟	Low Frequency Roll off (- 3dB)	$R_L = 4\Omega$		20		Hz
f _H	High Frequency Roll off (- 3dB)	$R_L = 4\Omega$		80		kHz
G√	Voltage Gain (closed loop)	f = 1kHz	35.5	36	36.5	dB
ΔG_{v}	Closed Loop Gain Matching			0.5		dB
en	Total Input Noise Voltage	$R_g = 10k\Omega (1)$ $R_g = 10k\Omega (2)$		1.5 2.5	8	μV μV
SVR	Supply Voltage Rejection (each channel)	$R_g = 10k\Omega$ $f_{ripple} = 100Hz$, $V_{ripple} = 0.5V$		55		dB
TJ	Thermal Shut-down Junction Temperature			145		°C

Notes: 1. Curve A 22Hz to 22kHz

Figure 1 : Test and Application Circuit ($G_V = 36dB$)

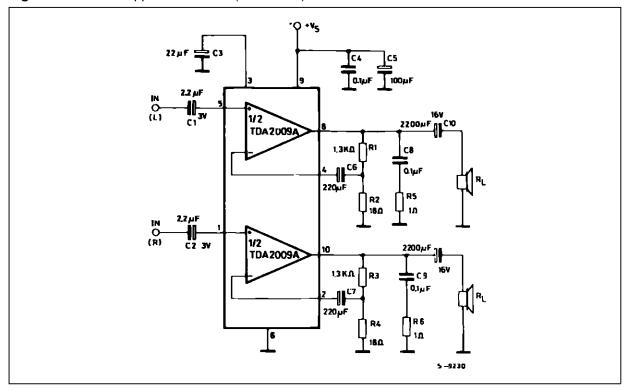


Figure 2: P.C. board and component layout of the fig. 1

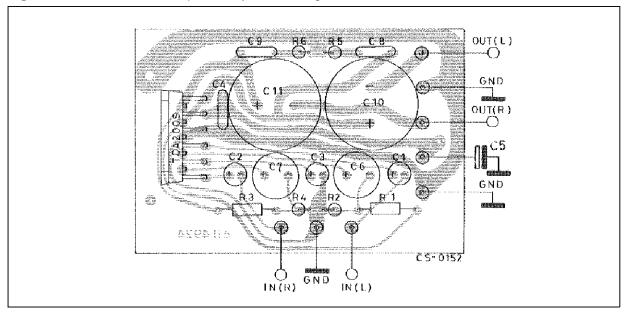
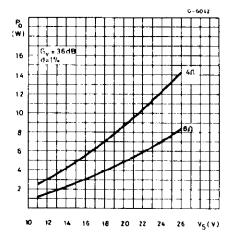



Figure 3: Output Power versus Supply Voltage

Figure 4: Output Power versus Supply Voltage

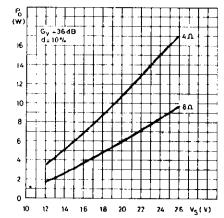


Figure 5: Distortion versus Output Power

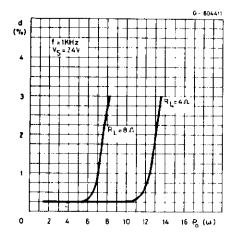


Figure 6: Distortion versus Frequency

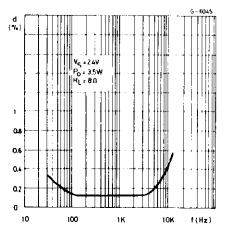
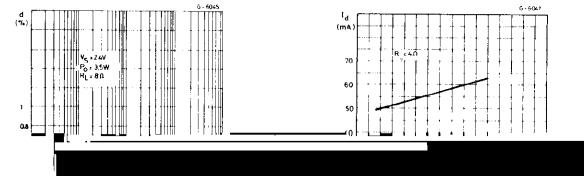



Figure 7: Distortion versus Frequency

Figure 8 : Quiescent Current versus Supply Voltage

5/12

Figure 9 : Supply Voltage Rejection versus Frequency

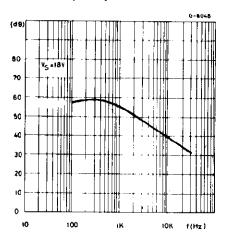


Figure 11: Total Power Dissipation and Efficiency versus Output Power

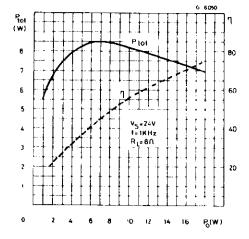
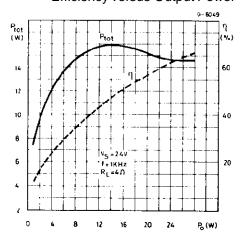
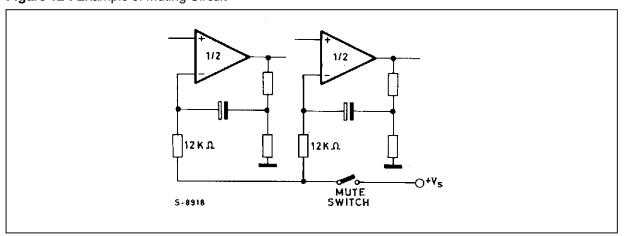




Figure 10: Total Power Dissipation and Efficiency versus Output Power

APPLICATION INFORMATION

Figure 12: Example of Muting Circuit

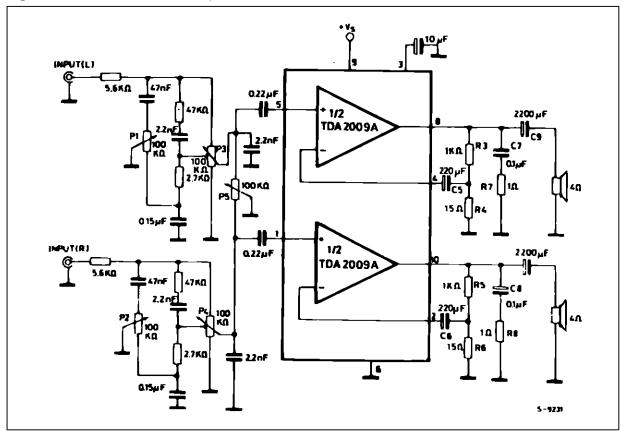
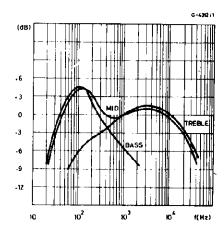
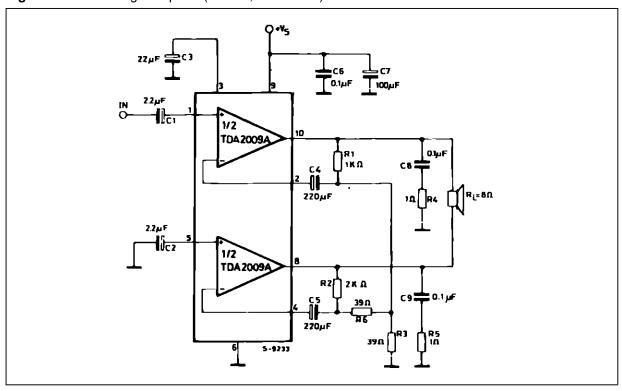



Figure 13: 10W +10W Stereo Amplifier with Tone Balance and Loudness Control

Figure 14: Tone Control Response (circuit of Figure 13)



12 n F 5 112 0 10 kg 10

5 - 9237

Figure 15: High Quality 20 + 20W Two Way Amplifier for Stereo Music Center (one channel only)

Figure 16: 18W Bridge Amplifier (d = 1%, $G_V = 40dB$)

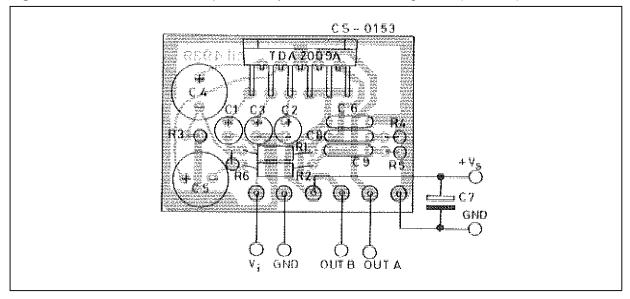


Figure 17: P.C. BOARD and Components Layout of the Circuit of Figure 16 (1:1 scale)

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1. Different values can be used; the following table can help the designer.

Component	Recommended Value	Purpose	Larger than	Smaller than
R1, R3	1.2kΩ	Close Loop Gain	Increase of Gain	Decrease of Gain
R2, R4	18kΩ	Setting (1)	Decrease of Gain	Increase of Gain
R5, R6	1Ω	Frequency Stability	Danger of Oscillation at High Frequency with Inductive Load	
C1, C2	2.2μF	Input DC Decoupling	High Turn-on Delay	High Turn-on Pop. Higher Low Frequency Cut-off. Increase of Noise
C3	22μF	Ripple Rejection	Better SVR. Increase of the Switch-on Time	Degradation of SVR
C6, C7	220μF	Feedback Input DC Decoupling		
C8, C9	0.1μF	Frenquency Stability		Danger of Oscillation
C10, C11	1000μF to 2200μF	Output DC Decoupling		Higher Low-frequency Cut-off

⁽¹⁾ The closed loop gain must be higher than 26dB.

BUILD-IN PROTECTION SYSTEMS

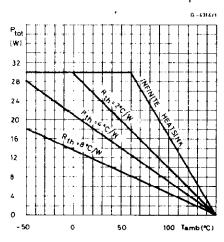
THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

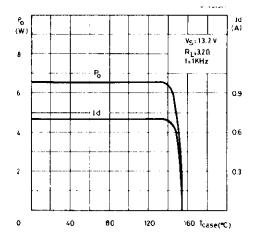
- an averload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that Po (and therefore Ptot) and Io are reduced.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); Figure 18 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Short circuit (AC Conditions). The TDA2009A can withstand an accidental short circuit from the output and ground made by a wrong connection during normal play operation.



MOUNTING INSTRUCTIONS


The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the MULTIWATT ® package attaching

Figure 18: Maximum Allowable Power Dissipation versus Ambient Temperature

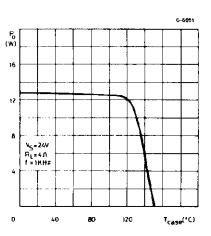
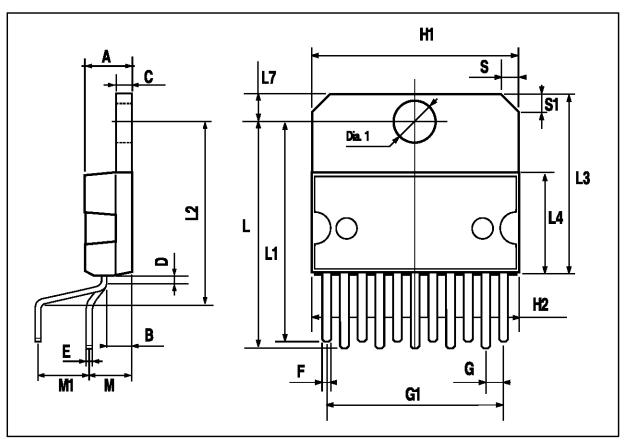


Figure 20: Output Power and Drain Current versus Case Temperature

the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two


Figure 19: Output Power versus Case Temperature

10/12

MULTIWATT11 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
E	0.49		0.55	0.019		0.022	
F	0.88		0.95	0.035		0.037	
G	1.45	1.7	1.95	0.057	0.067	0.077	
G1	16.75	17	17.25	0.659	0.669	0.679	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.87	0.886	
L2	17.4		18.1	0.685		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.25	4.55	4.85	0.167	0.179	0.191	
M1	4.73	5.08	5.43	0.186	0.200	0.214	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	

