INTEGRATED CIRCUITS

DATA SHEET

TDA4800

Vertical deflection circuit for monitor applications

Product specification Supersedes data of February 1992 File under Integrated Circuits, IC02 1997 Mar 27

Vertical deflection circuit for monitor applications

TDA4800

FEATURES

- Fully integrated, few external components
- RC oscillator with wide sync range of 1 : 3 (e.g. 50 to 150 Hz)
- Synchronization by positive or negative going sync pulse
- Blanking pulse duration is determined externally
- Dual frequency criterion for automatic amplitude switch-over (e.g. 50 to 60 Hz)
- Guard circuit for screen protection
- Sawtooth generator with buffer stage supplied by external voltage
- Preamplifier
- Power output stage with thermal and SOAR protection
- · Flyback generator
- Internal voltage stabilizer.

GENERAL DESCRIPTION

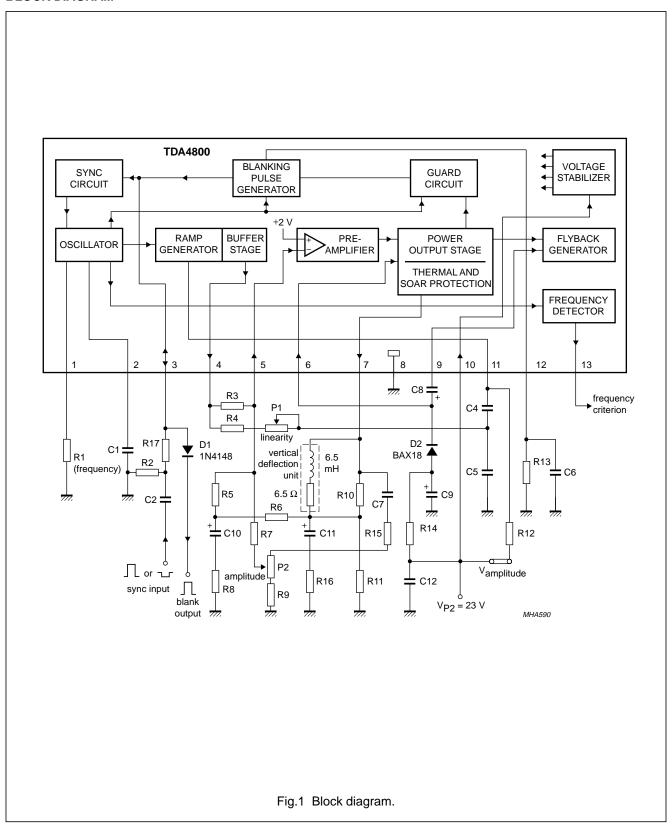
The TDA4800 is an integrated circuit for vertical deflection primarily in monitors (and TV receivers). The complete circuit consists of 11 main functional blocks as shown in Fig.1.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{P1}	supply voltage (pin 6)		10	_	30	٧
V _{P2}	supply voltage (pin 10)		10	_	45	٧
lР	supply current (pins 6 and 10)	note 1	_	215	_	mA
I _{7(p-p)}	output current (peak-to-peak value)		_	_	2.6	Α
f _{sync}	picture frequency	notes 1 and 2	_	_	135	Hz
V ₃	positive sync input pulse		1.0	_	6.0	V
V ₃	negative sync input pulse		-0.5	_	-0.7	٧
T _{amb}	operating ambient temperature	note 3	-20	_	+70	°C

Notes

- 1. Measured in Fig.4.
- 2. $f_o = 45 \text{ Hz } (f_{\text{sync(max)}} = 3f_o).$
- 3. $P_{tot} = 3.6 \text{ W for } R_{th(j-a)} = 20 \text{ K/W}.$

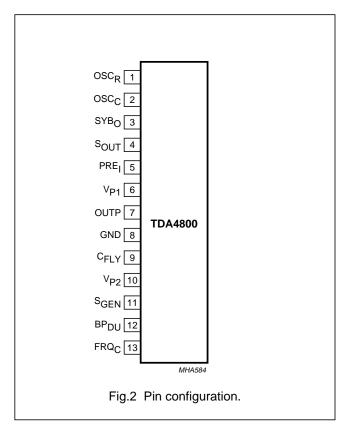

ORDERING INFORMATION

TYPE		PACKAGE					
NUMBER	NAME	DESCRIPTION	VERSION				
TDA4800	DBS13P	plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	SOT141-6				

Vertical deflection circuit for monitor applications

TDA4800

BLOCK DIAGRAM



Vertical deflection circuit for monitor applications

TDA4800

PINNING

SYMBOL	PIN	DESCRIPTION
OSC _R	1	oscillator resistor
OSC _C	2	oscillator capacitor
SYBO	3	sync input; blanking pulse output
S _{OUT}	4	sawtooth output
PREI	5	preamplifier input
V _{P1}	6	supply voltage 1
OUTP	7	deflection output
GND	8	ground
C _{FLY}	9	pin for the flyback generator capacitor
V _{P2}	10	supply voltage 2
S _{GEN}	11	sawtooth generator
BP _{DU}	12	blanking pulse duration
FRQ _C	13	frequency criterion

Vertical deflection circuit for monitor applications

TDA4800

FUNCTIONAL DESCRIPTION

The complete circuit consists of the following functional blocks as shown in Fig.1:

- 1. Oscillator
- 2. Synchronization circuit
- 3. Blanking pulse generator
- 4. Frequency detector and storage
- 5. Ramp generator
- 6. Buffer stage
- 7. Preamplifier
- 8. Power output stage
- 9. Flyback generator
- 10. Guard circuit
- 11. Voltage stabilizer.

Oscillator (pins 1 and 2)

The oscillator is an RC-oscillator with a threshold value switch, which ensures very good frequency stability.

The upper and lower threshold voltages are defined by an internal voltage divider.

An external capacitor C1 at pin 2 is charged by a constant current source. When the scan voltage of C1 reaches the upper threshold voltage, oscillator flyback starts. Capacitor C1 discharges via an internal resistor and transistor until the lower threshold is reached.

The constant charge current and free-running frequency f₀ are adjusted by an external resistor R1 at pin 1:

$$f_o = \frac{1}{K \times R1 \times C1}$$
 with K = 0.68.

Synchronization circuit (pin 3)

A positive- or negative-going pulse fed to pin 3 synchronizes the oscillator by lowering the upper threshold voltage. The synchronizing range is f_o to $3f_o$. For example: $f_o = 50 \text{ Hz} \rightarrow f_{\text{sync(max)}} = 150 \text{ Hz}$.

Blanking pulse generator (pin 3)

Also at pin 3 a blanking pulse is available. Diode D1 separates the synchronization pulse from the blanking pulse. During scanning, the external capacitor C6 at pin 12 is charged to an internal stabilized voltage V_{stab2} . The blanking pulse starts with the beginning of oscillator flyback; then capacitor C6 discharges via the external resistor R13 at pin 12. The blanking pulse stops when the capacitor voltage is $\frac{1}{2}V_{\text{stab2}}$.

The blanking pulse duration is determined by the values of external components R13 and C6 at pin 12:

 $t_{bl} = R13 \times C6 \times Ln2$.

Frequency detector with storage (pin 13)

At the end of the scanning period a frequency detector detects the oscillator frequency (see "Note" below).

When this frequency is above the threshold a flip-flop is set to store this information. The output is an open collector output.

NOTE

Frequency detector change-over at pin 13 from low (= low frequency) to high (= high frequency) is determined by f_o : $f_{threshold} = 1.23 \times f_o$.

Ramp generator (pin 11)

The ramp generator consists of two external series capacitors C4 and C5, external charge resistor R12 (connected to pin 11), and an internal differential amplifier which is synchronously switched by the oscillator.

External capacitors C4 and C5 at pin 11 are charged by the charging current via the external charge resistor R12 until oscillator flyback starts. C4 and C5 are then discharged via pin 11 by an internal resistor and transistor. This generates a positive-going ramp voltage.

Buffer stage (pin 4)

The buffer stage consists of two emitter followers. The ramp voltage is fed via the buffer stage and is available at pin 4 with a low ohmic output impedance. With R4 and P1 it generates a ramp function, which, together with the feedback network of the deflection yoke, gives a high degree of linearity at the picture tube. The linearity can be adjusted by P1.

Preamplifier (pin 5)

The preamplifier is a differential amplifier. The non-inverting input is fixed at about 2 V by an internal voltage divider. The inverting input at pin 5 is connected to the ramp voltage via R3 and feedback network P2, R5 to R11, R15, R16, C7, C10 and C11.

Power output stage (pin 7)

The power output stage is an amplifier with a quasi-complementary class-B output. The output is connected to pin 7.

The power stage includes SOAR and thermal protection.

Vertical deflection circuit for monitor applications

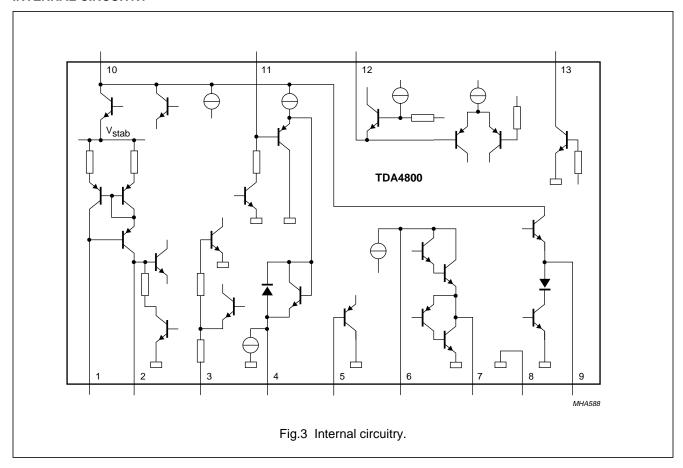
TDA4800

Flyback generator (pin 9)

The flyback generator has an external capacitor C8 at pin 9. During scanning, the internal circuit switches pin 9 almost to ground; thereby C8 is charged by the supply voltage via external components R14 and D2.

During the flyback time pin 9 is switched almost to the supply voltage, so that the supply voltage for the power output stage (pin 6) is nearly doubled. This high flyback voltage ensures a very short flyback time.

Guard circuit (pin 3)


When the vertical deflection current is absent (e.g. short-circuited, or open-circuited of the yoke) the guard circuit changes the blanking pulse at pin 3 into a DC signal which blanks the beam current to protect the screen.

Also an oscillator defect (C1 short-circuited or R1 disconnected from pin 1) switches on the guard circuit.

Voltage stabilizer

The voltage stabilizer circuit provides a stable operating voltage of about 7.5 V for several internal circuits of the TDA4800.

INTERNAL CIRCUITRY

Vertical deflection circuit for monitor applications

TDA4800

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V ₂	voltages		0	6	V
V ₁₁			0	24	V
V ₁₂			0	6	V
V ₁₃			0	50	V
V ₁₀	supply voltages (V _P)		0	50	V
V ₉			0	50	V
V ₇			0	60	V
V ₆			0	60	V
V ₅			0	6	V
V ₄			0	24	V
V ₃			-0.7	+6	V
I ₁	currents		0	-1	mA
l ₃			+3	-10	mA
I ₄			0	-5	mA
I ₆ , I ₇ , I ₈			no	ote 1	
l ₉			-1.5	+1.5	Α
I ₁₁			-0.1	+30	mA
T _{stg}	storage temperature		-25	+150	°C
T _{amb}	operating ambient temperature	note 2	-20	+70	°C
Tj	junction temperature	note 3	_	150	°C
P _{tot}	total power dissipation	note 2	_	_	W
V _{ESD}	ESD sensitivity	note 4	-2000	+2000	V

Notes

- 1. I₆, I₇ and I₈ are limited by SOAR protection circuit that ensures that short-circuiting between the output pin 7 and supply voltage or ground does not destroy the output stage. A short-circuit may be soldered into the printed-circuit board or may sometimes (non-periodically) occur in the applied circuit.
- 2. The maximum value for the operating ambient temperature range and the power dissipation depends on the heatsink.
- 3. Internally limited by thermal protection: switching temperature point at $T_i = 150 \pm 8$ °C.
- 4. Human body model: 1.5 k Ω , 100 pF, 5 pulses.

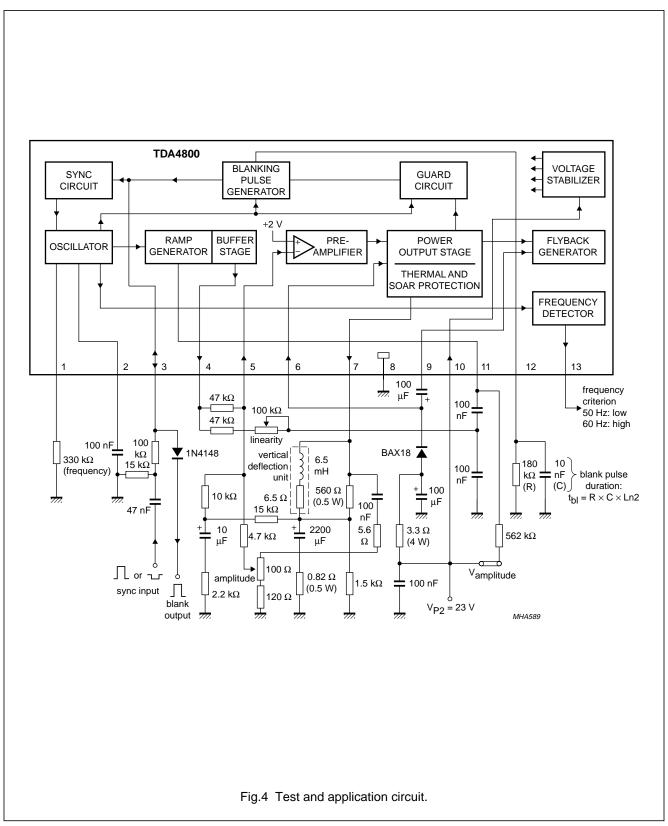
THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	20	K/W
R _{th(j-mb)}	thermal resistance from junction to mounting base	5	K/W

Vertical deflection circuit for monitor applications

TDA4800

CHARACTERISTICS


All voltages are measured to GND (ground; pin 8); T_{amb} = 25 °C; V_P = 23 V; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{P1}	supply voltage (pin 6)		10	_	30	V
V _{P2}	supply voltage (pin 10)		10	_	45	V
I ₁₀	supply current	$V_{10} = 25 \text{ V}; V_5 = 3 \text{ V}$ without load	_	12	_	mA
I ₆	supply current	$V_6 = 25 \text{ V}; V_5 = 1 \text{ V}$ without load	_	20	_	mA
I ₆	supply current	$V_6 = 25 \text{ V}; V_5 = 3 \text{ V}$ without load	_	5	_	mA
V _{7(min)}	minimum output voltage	I ₇ = 1 A	_	1.4	1.65	V
V _{7(max)}	maximum output voltage	I ₇ = -1 A	V ₆ – 2.3	V ₆ – 2.0	_	V
V ₉	output voltage during flyback	I ₉ = -1 A	_	V ₁₀ – 2.2	_	V
l ₇	output current		_	_	±1.3	Α
l ₉	output current		_	_	±1.3	Α
I ₅	preamplifier input current		_	-0.1	_	μΑ
V ₁	stabilized voltage		6.1	6.8	7.3	V
V ₃	blanking pulse output voltage		_	5.7	_	V
R ₃	blanking pulse output resistance		_	300	_	Ω
l ₃	blanking pulse output current		0	_	-3	mA
t _{bl}	blanking pulse duration	R = 100 kΩ; C = 10 nF (pin 12)	640	680	730	μs
V ₁₁	output voltage ramp generator		0.3	_	20	V
I ₁₁	output current ramp generator		-2	_	15 × 10 ³	μΑ
V ₁₃	output voltage frequency detector	lower frequency I ₁₃ = 1 mA	_	_	1.0	V
I ₁₃	leakage current frequency detector	higher frequency V ₁₃ = 50 V	_	_	1.0	μΑ
V ₄	output voltage buffer stage		0	_	20	V
I ₄	output current buffer stage		_	_	-4.0	mA
V ₃	synchronizing input voltage	positive sync	1.0	_	6.0	V
V ₃	synchronizing input voltage	negative sync	-0.5	_	-0.7	V
	tolerance of free running oscillator	without sync	-3.0	_	+3.0	%
$\frac{\Delta f}{f} \times \frac{1}{\Delta T_{mb}}$	oscillator temperature dependency	T _{mb} = 20 to 100 °C	_	10 ⁻⁴	_	K ⁻¹
$\frac{\Delta f}{f} \times \frac{1}{\Delta V_P}$	oscillator voltage dependency	V _P = 10 to 30 V	_	4 × 10 ⁻⁴	_	K ⁻¹
f _o f _{sync}	synchronizing ratio		1:2.9	1:3	-	

Vertical deflection circuit for monitor applications

TDA4800

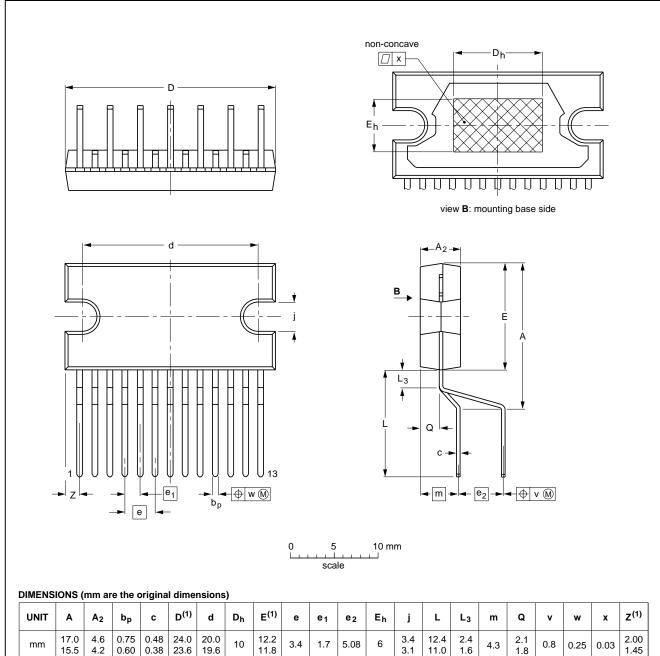
TEST AND APPLICATION INFORMATION

Vertical deflection circuit for monitor applications

TDA4800

TDA4800 in the test and application circuit (see Fig.4)

SYMBOL	PARAMETER	CONDITIONS	TYP.	UNIT
V _{P2}	supply voltage		23	V
Ι _P	supply current		215	mA
V ₇	DC output voltage		11.8	V
V_{7M}	peak output voltage		45	V
I ₇	output current		0.8	А
$I_{Y(p-p)}$	vertical deflection current (peak-to-peak value)		1.5	А
t _{fb}	flyback time		0.3	ms
t _{bl}	blanking pulse duration		1.25	ms
P _{tot}	total power dissipation		3.3	W
fo	free running oscillator frequency	without sync	45	Hz


Vertical deflection circuit for monitor applications

TDA4800

PACKAGE OUTLINE

DBS13P: plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)

SOT141-6

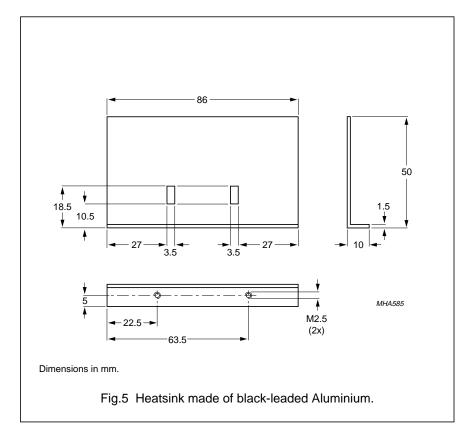
UNIT	A	A ₂	bp	С	D ⁽¹⁾	d	D _h	E ⁽¹⁾	е	e ₁	e ₂	Eh	j	L	L ₃	m	Q	v	w	х	Z ⁽¹⁾
mm	17.0 15.5	4.6 4.2	0.75 0.60	0.48 0.38	24.0 23.6	20.0 19.6	10	12.2 11.8	3.4	1.7	5.08	6	3.4 3.1	12.4 11.0	2.4 1.6	4.3	2.1 1.8	0.8	0.25	0.03	2.00 1.45

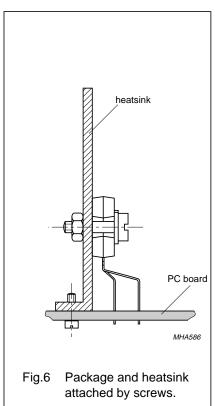
Note

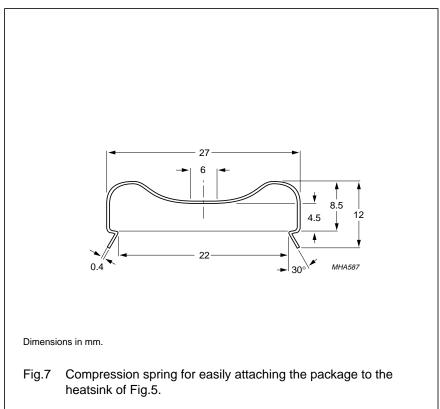
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

	OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
	VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
	SOT141-6					92-11-17 95-03-11

1997 Mar 27 11


Vertical deflection circuit for monitor applications


TDA4800


MOUNTING INSTRUCTIONS FOR 13-LEAD DBS13P POWER PACKAGE

The rise in temperature caused by power dissipation in the circuit is reduced by adding a heatsink with a sufficiently low thermal resistance: $R_{th(mb-h)} + R_{th(h-a)} = R_{th(mb-a)}$ (e.g. the heatsink of Fig.5). It is possible to attach the package to the heatsink by screws (Fig.6) or by a compression spring (Fig.7). A layer of silicon grease between the heatsink and the mounting base optimizes

thermal contact.

