INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC01 April 1994

TDA1319T

FEATURES

- Bidirectional high current output drivers
- Single point current setting
- Extra erase current for the auxiliary channel
- · Increased current for auxiliary data
- Low standby power consumption
- Short-circuit protection to ground
- Serial data input
- Reduced RF emission due to slope control of write current.

GENERAL DESCRIPTION

The TDA1319T has been designed to drive an inductive recording head which is suitable for DCC (Digital Compact Cassette) systems. The bidirectional current outputs are controlled by a two-wire serial bus. The amplitude of the write current can be set using an external resistor. The circuit can be switched to the standby mode to minimize supply current consumption.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	supply voltage		4.75	5.0	5.5	V
V _{DDO}	supply voltage (write outputs)		4.75	5.0	5.5	V
I _{DD}	supply current	note 1	-	7.5	11	mA
I _{DDO}	supply current (write outputs)	note 2	-	-	255	mA
		note 3	-	-	365	mA
		note 4	-	-	285	mA
I _{sb}	total standby current	note 5	-	2	3	mA
T _{amb}	operating ambient temperature		-30	_	+85	°C

Notes

- 1. 1 k Ω erase adjust resistor connected between pins 5 and 6, no load at pin 9.
- 2. Momentary maximum value during write data; see Table 1; $I_0 = 225$ mA.
- Momentary maximum value during erase AUX; see Table 1 and Fig.5; resistor R_e connected between pins 5 and 6 (see Fig.7).
- 4. Momentary maximum value during write AUX; see Table 1; $I_0 = 255$ mA.
- 5. Standby mode; see Table 1; $I_{sb} = I_{DD} + I_{DDO} + I_{clamp}$.

ORDERING INFORMATION

EXTENDED TYPE	PACKAGE				
NUMBER	PINS	PIN POSITION	MATERIAL	CODE	
TDA1319T	24	SO24L	plastic	SOT137-1	

TDA1319T

BLOCK DIAGRAM

TDA1319T

PINNING

SYMBOL	PIN	DESCRIPTION
RX	1	auxiliary current adjust resistor
RD	2	data current adjust resistor
RSENSE	3	sense voltage positive input
V _{SSS}	4	sense voltage ground
V _{SSE}	5	erase current source ground
RE	6	erase current adjust resistor
V _{DD}	7	supply voltage
V _{SS}	8	ground
V _{ref}	9	reference voltage output
STANDBY	10	standby mode control input
WCLK	11	write clock input
WDATA	12	write data input
QJ	13	write pulse output
QI	14	write pulse output
QH	15	write pulse output
QG	16	write pulse output
QF	17	write pulse output
V _{DDO}	18	supply voltage (write outputs)
QE	19	write pulse output
QD	20	write pulse output
QC	21	write pulse output
QB	22	write pulse output
QA	23	write pulse output
CLAMP	24	clamp current output

FUNCTIONAL DESCRIPTION

The TDA1319T is designed to drive the nine elements of the multichannel recording head (as used in a DCC recorder) by forcing a current through the selected path. A brief functional description of each block (see Fig.1) is given below.

Decoder

The IC is controlled by the 32-bit wide serial dataword which is clocked in at WDATA (pin 12). The clock frequency (WCLK, pin 11) is 3.072 MHz with a clock period of 325 ns. The write pulses are made available at the outputs QA to QJ (see Fig.4). The timing sequence of the write pulses is illustrated in Fig.5.

The operating mode of the IC can be set by the first 3 bits of data (see Fig.5). The signals TCH0 to TCH7 and TERAUX determine the direction of the write current. When TCHn is HIGH, the current flows as indicated in Fig.4. When TCHn is LOW current flows in the opposite direction. The various modes of operation are given in Table 1. The standby mode can also be forced by setting the STANDBY input (pin 10) HIGH.

Current amplifier

The write current at the outputs is regulated by the current amplifier. The value of the current I_d can be set using an external resistor R_d , connected between pin 2 and V_{SS} (see Fig.9). The current through R_d also flows at the outputs. The current amplifier regulates the voltage across R_d , which is measured between RSENSE and V_{SSS} (pins 3 and 4), to a value of 150 mV (see Chapter "Characteristics"). This force-sense technique eliminates the influence of parasitic series impedances.

The output of the current amplifier is internally switched to the output pins QA to QJ. During AUX write (outputs QA and QB active) an additional current I_x is added to the write current. This current can be controlled by a resistor R_x connected between RX (pin 1) and V_{SS} . R_X must be $6.7 \times R_d$ for 1.2 dB current increase.

During the erase mode of the auxiliary channel (TERAUX = HIGH; see Table 1) it is possible to let an additional output current le flow through QA and QB (pins 23 and 22). This extra current can be adjusted with an external resistor R_e connected between pins 6 and 5. Pin 5 must be externally connected to ground. A typical value of the extra current can be calculated from the response curve of Fig.7.

Voltage reference

A reference voltage is available at pin 9. This voltage is derived from a bandgap reference source and can be used to modify the voltage sensed by the current amplifier, e.g. for external temperature compensation.

Outputs

Each channel is selected in sequence. Depending on the dataword, the current is directed forward or reversed through the heads. The outputs that are not selected are kept floating to prevent any incorrect current flow. A simplified schematic of one output stage is illustrated in Fig.3. In the HIGH state (one of the switches A1 to J1 is closed) the output is internally connected to a fixed voltage V_{OH} (see Chapter "Characteristics"). In the LOW state (one of the switches A0 to J0 is closed) the output is connected to the current amplifier. The voltage developed across the output pin pairs must not exceed a certain value, otherwise the lower switch transistor (Fig.3) will become saturated.

Clamp circuit

During the periods that the head elements are not selected, the clamp circuit accommodates the write current. This current is directed through an external resistor from pin 24 to the supply, in order to have less dissipation in the IC. The clamping results in a constant current being drawn from the supply and therefore reduces emission of interferences (the DC level at pin 24 must not fall lower than 1.8 V).

Standby

The circuit is in the standby mode when TDAPLB = 1 and TAUPLB = 1 (see Table 1 and Fig.6), or when a HIGH level is applied to pin 10. After a HIGH-to-LOW transition at pin 10, the IC will remain in the standby mode until TDAPLB = 0 or TAUPLB = 0. When the IC is in the standby mode, the current amplifier is switched off to minimize the power consumption, switches A to J are open-circuit and the voltage reference and the erase source are switched off.

Protection

The IC is immediately switched to standby mode when a short-circuit to ground at an output pin is detected ($V_o < 0.5 V$; see Fig.6, "SHORT"). When the short-circuit condition is removed, the IC will resume operation. The state of the decoder is not affected by a "SHORT".

TDA1319T

TDA1319T

Table 1	Modes of operation.
---------	---------------------

DATA CHANNELS 0 TO 7	AUXILIARY CHANNELS	TDAPLB (DATA CHANNEL PLAYBACK)	TAUPLB (AUXILIARY CHANNEL PLAYBACK)	TERAUX (AUXILIARY CHANNEL ERASE)	REMARKS
Read	read	1	1	Х	standby mode
Write (I _d)	read	0	1	Х	
Write (I _d)	write $(I_d + I_x)$	0	0	0	
Write (I _d)	erase $(I_d + I_x + I_e)$	0	0	1	
Read	write $(I_d + I_x)$	1	0	0	
Read	erase $(I_d + I_x + I_e)$	1	0	1	

Note

1. X = don't care; 0 = LOW; 1 = HIGH.

TDA1319T

DCC write amplifier (write 2)

TDA1319T

TDA1319T

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); all voltages referenced to ground (pin 8); all currents are positive into the IC.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage		-0.3	+5.5	V
V _{DDO}	supply voltage (write outputs)		-0.3	+5.5	V
VI	input voltage (pins 1 to 6, 9 to 17 and 19 to 24)	V _{DD} + 0.3 < 5.5 V	-0.3	V _{DD} + 0.3	V
I _n	maximum input current (pins 3, 4, 6 and 9 to 12)		-10	+10	mA
I ₁	maximum input current (pin 1)		-40	+40	mA
I ₅	maximum input current (pin 5)		-100	+40	mA
I ₂	maximum input current (pin 2)		-250	+40	mA
I ₁₈	maximum input current (pin 18)		-40	+400	mA
T _{amb}	operating ambient temperature		-30	+85	°C
T _{stg}	storage temperature		-55	+150	°C
V _{es}	electrostatic handling	note 1	-2000	+2000	V

Note

1. Equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE			
R _{th j-a}	from junction to ambient in free air	65 K/W			

TDA1319T

CHARACTERISTICS

 $V_{DD} = V_{DDO} = 5 \text{ V}$; $f_{clk} = 3.072 \text{ MHz}$; $T_{amb} = 25 \text{ °C}$; outputs QA to QJ resistively loaded; resistors connected in accordance with Fig.9; all voltages referenced to V_{SS} (pin 8); unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Supply							
V _{DD}	supply voltage		4.75	5.0	5.5	V	
V _{DDO}	supply voltage (write outputs)		4.75	5.0	5.5	V	
I _{DD}	supply current	note 1	_	7.5	11	mA	
I _{DDO}	supply current (write outputs)	note 2	-	-	255	mA	
		note 3	_	-	365	mA	
		note 4	-	-	285	mA	
I _{sb}	total standby current	note 5	-	2	3	mA	
P _{d(av)}	average power dissipation	note 6	_	645	-	mW	
Digital inputs (pins 10 to 12)		-				
VIH	HIGH level input voltage		3.5	-	5.0	V	
V _{IL}	LOW level input voltage		0	-	1.5	V	
IIL	input leakage current		-10	-	+10	μA	
t _{su}	WDATA set-up time	see Fig.8	30	-	-	ns	
t _h	WDATA hold time	see Fig.8	30	-	-	ns	
Outputs (pins	9, 13 to 17 and 19 to 23)	•				•	
V _{ODATH}	HIGH level data output voltage	note 7	_	3.7	-	V	
V _{OAUXH}	HIGH level auxiliary output voltage	note 8	_	3.7	-	V	
I _{O(min)}	minimum output current		_	-	25	mA	
I _{ODAT(max)}	maximum data output current		225	-	-	mA	
I _{OAUX(max)}	maximum auxiliary output current	note 9	335	-	-	mA	
Δl _O /l _O	output current deviation between channels	note 7	_	-	0.5	dB	
I _{AUX}	relative auxiliary write current increase	note 10	1	1.2	1.4	dB	
l _e	additional output current	note 3	-	-	80	mA	
V _{ref}	reference voltage (pin 9)	I _O < 3 mA	2.4	2.5	2.6	V	
Current amplif	Current amplifier (pins 1 to 4)						
V _{sense}	sense voltage regulation between pins 3 and 4		140	150	160	mV	
V ₁ , V ₂	maximum DC voltage level (pins 1 and 2)		_	-	500	mV	

TDA1319T

Notes

- 1. 1 k Ω erase adjust resistor connected between pins 5 and 6, no load at pin 9.
- 2. Momentary maximum value during write data; see Table 1; $I_0 = 225$ mA.
- Momentary maximum value during erase AUX; see Table 1 and Fig.5; resistor R_e connected between pins 5 and 6 (see Fig.7).
- 4. Momentary maximum value during write AUX; see Table 1; I_0 = 255 mA.
- 5. Standby mode; see Table 1; $I_{sb} = I_{DD} + I_{DDO} + I_{clamp}$.
- 6. Auxiliary and data write mode; $I_d = 170 \text{ mA}$; $R_L = 3 \Omega$ (between current outputs); $R_{clamp} = 12 \Omega$.
- 7. Data channels (pins 13 to 17 and 19 to 22); maximum output load resistance is 5 Ω ; $I_0 = 225$ mA. Deviation defined as 20log {($I_{O(max)} I_{O(min)}$)/ $I_{o(av)}$ } for channels 0 to 7.
- 8. Auxiliary channel (pins 22 and 23); auxiliary erase mode; $I_0 = 335$ mA.
- 9. Auxiliary channel (pins 22 and 23); auxiliary erase mode; maximum output load resistance is 4 Ω.
- 10. Defined as 20log {(I_d + I_x)/I_d} when $R_x = 6.7 \times R_d$.

TDA1319T

TEST AND APPLICATION INFORMATION

TDA1319T

PACKAGE OUTLINE

TDA1319T

SOLDERING

Plastic small-outline packages

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

BY SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be

applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to $300 \,^{\circ}$ C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 $^{\circ}$ C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.