
SQ2309ES

Vishay Siliconix

Automotive P-Channel 60 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	- 60		
$R_{DS(on)}(\Omega)$ at $V_{GS} = -10 \text{ V}$	0.335		
$R_{DS(on)}(\Omega)$ at $V_{GS} = -4.5 V$	0.500		
I _D (A)	- 1.7		
Configuration	Single		

FEATURES

- Halogen-free According to IEC 61249-2-21
 Definition
- TrenchFET® Power MOSFET
- AEC-Q101 Qualified^c
- 100 % $R_{\rm q}$ and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

KOHS COMPLIANT HALOGEN FREE

ORDERING INFORMATION	
Package	SOT-23
Lead (Pb)-free and Halogen-free	SQ2309ES-T1-GE3

ABSOLUTE MAXIMUM RATINGS (T _C =	= 25 °C, unles	ss otherwise noted)		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	- 60	V	
Gate-Source Voltage		V _{GS}	± 20	- V	
Continuous Drain Current	T _C = 25 °C		- 1.7		
	T _C = 125 °C	- I _D	- 1		
Continuous Source Current (Diode Conduction)		I _S	- 2.6	А	
Pulsed Drain Current ^a		I _{DM}	- 6.8		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	- 15		
Single Pulse Avalanche Energy		E _{AS}	11	mJ	
	T _C = 25 °C	PD	2	W	
Maximum Power Dissipation ^a	T _C = 125 °C		0.6	٧V	
Operating Junction and Storage Temperature Range)	T _J , T _{stg}	- 55 to + 175	°C	

THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	LIMIT	UNIT	
Junction-to-Ambient	PCB Mount ^b	R _{thJA}	166	°C/W	
Junction-to-Foot (Drain)		R _{thJF}	73	0/10	

Notes

a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$

b. When mounted on 1" square PCB (FR-4 material).

c. Parametric verification ongoing.

www.vishay.com

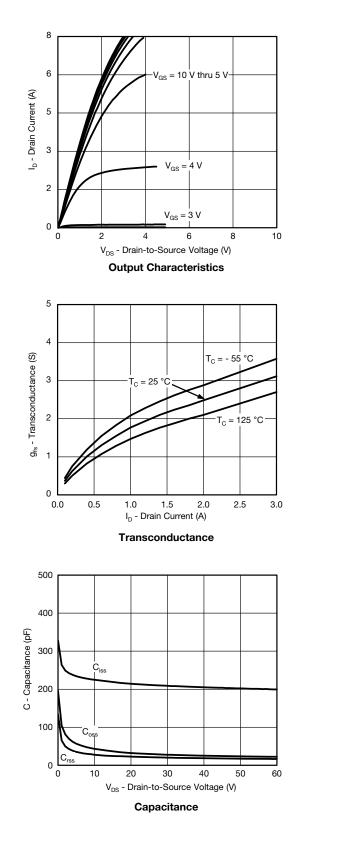
SQ2309ES Vishay Siliconix

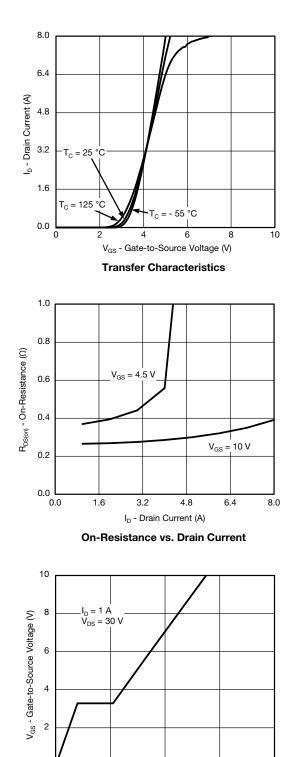
SPECIFICATIONS ($T_C = 25 \ ^{\circ}C$,	unless otherv	vise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static					-			
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	$V_{GS} = 0 V, I_D = -250 \mu A$		-	-	v	
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V _{GS} , I _D = - 250 μA	- 1.5	- 2.0	- 2.5	v	
Gate-Source Leakage	I _{GSS}	V _{DS} =	$V_{DS} = 0 V, V_{GS} = \pm 20 V$		-	± 100	nA	
		$V_{GS} = 0 V$	V _{DS} = - 60 V	-	-	- 1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = -60 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	-	-	- 50	μA	
		$V_{GS} = 0 V$	$V_{DS} = -60 \text{ V}, \text{ T}_{J} = 175 ^{\circ}\text{C}$	-	-	- 150		
On-State Drain Current ^a	I _{D(on)}	V _{GS} = - 10 V	$V_{DS} \le -5 V$	- 5	-	-	А	
		V _{GS} = - 10 V	I _D = - 1.25 A	-	0.268	0.335		
Drain Source On State Registered	Б	V _{GS} = - 10 V	I _D = - 1.25 A, T _J = 125 °C	-	-	0.567	Ω	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -10 V$	I _D = - 1.25 A, T _J = 175 °C	-	-	0.704	52	
		$V_{GS} = -4.5 V$	I _D = - 1 A	-	0.370	0.500		
Forward Transconductanceb	9 _{fs}	V _{DS} = - 5 V, I _D = - 1 A		-	1.8	-	S	
Dynamic ^b					-			
Input Capacitance	C _{iss}		V _{DS} = - 25 V, f = 1 MHz	-	211	265	pF	
Output Capacitance	C _{oss}	$V_{GS} = 0 V$		-	30	40		
Reverse Transfer Capacitance	C _{rss}			-	21	30		
Total Gate Charge ^c	Qg			-	5.5	8.5		
Gate-Source Charge ^c	Q _{gs}	V _{GS} = - 10 V	$V_{DS} = -30 \text{ V}, I_{D} = -1 \text{ A}$	-	0.8	-	nC	
Gate-Drain Charge ^c	Q _{gd}			-	1.3	-		
Gate Resistance	R _g	f = 1 MHz		4.95	9.88	14.80	Ω	
Turn-On Delay Time ^c	t _{d(on)}			-	5	8		
Rise Time ^c	t _r	$\begin{array}{l} V_{DD}=\text{-}~30~\text{V},~\text{R}_{\text{L}}=30~\Omega\\ \text{I}_{\text{D}}\cong\text{-}~3~\text{A},~\text{V}_{\text{GEN}}=\text{-}~10~\text{V},~\text{R}_{\text{g}}=1~\Omega \end{array}$		-	9	14	- ns	
Turn-Off Delay Time ^c	t _{d(off)}			-	12	18		
Fall Time ^c	t _f	1	1 1		9	14		
Source-Drain Diode Ratings and Char	acteristics ^b							
Pulsed Current ^a	I _{SM}			-	-	- 6.8	Α	
Forward Voltage	V _{SD}	$I_{\rm F} = -1.5 \text{ A}, V_{\rm GS} = 0 \text{ V}$		-	- 0.85	- 1.2	V	

Notes

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.


c. Independent of operating temperature.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

Q_g - Total Gate Charge (nC) Gate Charge

4

6

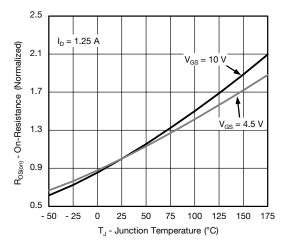
S11-2111-Rev. B, 07-Nov-11

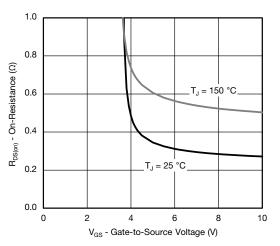
0

0

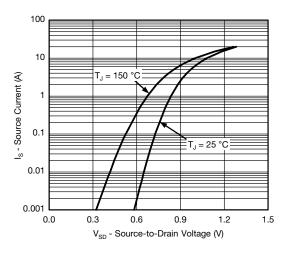
2

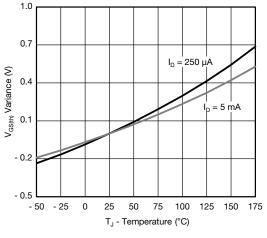
Document Number: 67024

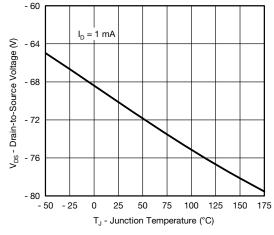

8


SQ2309ES

Vishay Siliconix

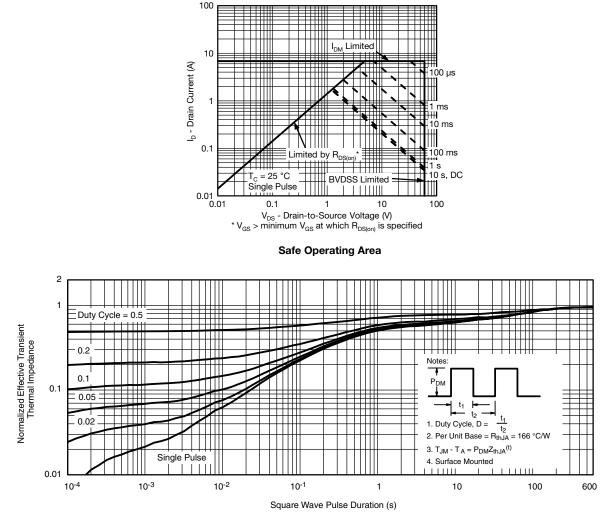

TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


On-Resistance vs. Junction Temperature


On-Resistance vs. Gate-to-Source Voltage

Source Drain Diode Forward Voltage

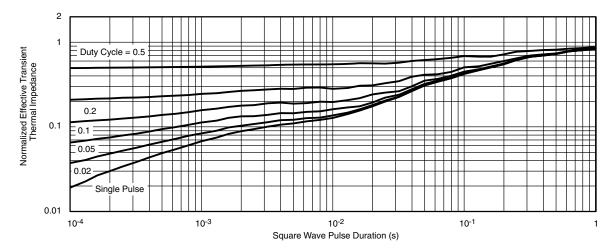
Drain Source Breakdown vs. Junction Temperature


S11-2111-Rev. B, 07-Nov-11

4

Vishay Siliconix

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)



Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix

THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Foot

Note

• The characteristics shown in the two graphs

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

- Normalized Transient Thermal Impedance Junction-to-Foot (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67024.

Ordering Information

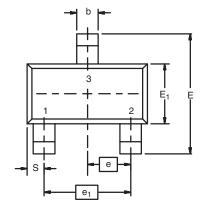
Vishay Siliconix

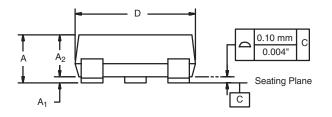
SOT-23

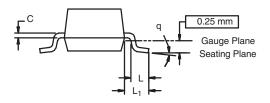
Ordering codes for the SQ rugged series power MOSFETs in the SOT-23 package:

DATASHEET PART NUMBER	OLD ORDERING CODE ^a	NEW ORDERING CODE
SQ2301ES	SQ2301ES-T1-GE3	SQ2301ES-T1_GE3
SQ2303ES	SQ2303ES-T1-GE3	SQ2303ES-T1_GE3
SQ2308CES	SQ2308CES-T1-GE3	SQ2308CES-T1_GE3
SQ2309ES	SQ2309ES-T1-GE3	SQ2309ES-T1_GE3
SQ2310ES	SQ2310ES-T1-GE3	SQ2310ES-T1_GE3
SQ2315ES	SQ2315ES-T1-GE3	SQ2315ES-T1_GE3
SQ2318AES	SQ2318AES-T1-GE3	SQ2318AES-T1_GE3
SQ2319ADS	-	SQ2319ADS-T1_GE3
SQ2325ES	SQ2325ES-T1-GE3	SQ2325ES-T1_GE3
SQ2337ES	SQ2337ES-T1-GE3	SQ2337ES-T1_GE3
SQ2348ES	SQ2348ES-T1-GE3	SQ2348ES-T1_GE3
SQ2351ES	SQ2351ES-T1-GE3	SQ2351ES-T1_GE3
SQ2361AEES	SQ2361AEES-T1-GE3	SQ2361AEES-T1_GE3
SQ2361ES	-	SQ2361ES-T1_GE3
SQ2362ES	-	SQ2362ES-T1_GE3
SQ2389ES	-	SQ2389ES-T1_GE3
SQ2398ES	-	SQ2398ES-T1_GE3

Note


a. Old ordering code is obsolete and no longer valid for new orders




Package Information

Vishay Siliconix

SOT-23 (TO-236): 3-LEAD

Dim	MILLIN	METERS	INCHES			
	Min	Max	Min	Мах		
Α	0.89	1.12	0.035	0.044		
A ₁	0.01	0.10	0.0004	0.004		
A ₂	0.88	1.02	0.0346	0.040		
b	0.35	0.50	0.014	0.020		
С	0.085	0.18	0.003	0.007		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E ₁	1.20	1.40	0.047	0.055		
е	0.95	0.95 BSC		0.0374 Ref		
e ₁	1.90	1.90 BSC		0.0748 Ref		
L	0.40	0.60	0.016	0.024		
L ₁	0.6	0.64 Ref		5 Ref		
S	0.50 Ref		0.020 Ref			
q	3°	8°	3°	8°		

Mounting LITTLE FOOT[®] SOT-23 Power MOSFETs

Wharton McDaniel

Surface-mounted LITTLE FOOT power MOSFETs use integrated circuit and small-signal packages which have been been modified to provide the heat transfer capabilities required by power devices. Leadframe materials and design, molding compounds, and die attach materials have been changed, while the footprint of the packages remains the same.

See Application Note 826, *Recommended Minimum Pad Patterns With Outline Drawing Access for Vishay Siliconix MOSFETs*, (http://www.vishay.com/doc?72286), for the basis of the pad design for a LITTLE FOOT SOT-23 power MOSFET footprint . In converting this footprint to the pad set for a power device, designers must make two connections: an electrical connection and a thermal connection, to draw heat away from the package.

The electrical connections for the SOT-23 are very simple. Pin 1 is the gate, pin 2 is the source, and pin 3 is the drain. As in the other LITTLE FOOT packages, the drain pin serves the additional function of providing the thermal connection from the package to the PC board. The total cross section of a copper trace connected to the drain may be adequate to carry the current required for the application, but it may be inadequate thermally. Also, heat spreads in a circular fashion from the heat source. In this case the drain pin is the heat source when looking at heat spread on the PC board.

Figure 1 shows the footprint with copper spreading for the SOT-23 package. This pattern shows the starting point for utilizing the board area available for the heat spreading copper. To create this pattern, a plane of copper overlies the drain pin and provides planar copper to draw heat from the drain lead and start the process of spreading the heat so it can be dissipated into the

ambient air. This pattern uses all the available area underneath the body for this purpose.

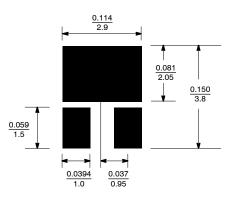
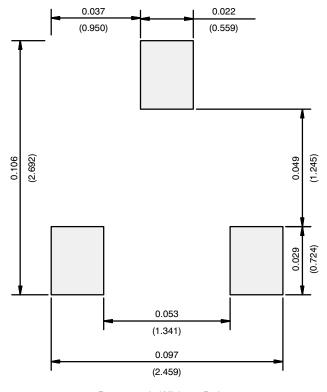


FIGURE 1. Footprint With Copper Spreading

Since surface-mounted packages are small, and reflow soldering is the most common way in which these are affixed to the PC board, "thermal" connections from the planar copper to the pads have not been used. Even if additional planar copper area is used, there should be no problems in the soldering process. The actual solder connections are defined by the solder mask openings. By combining the basic footprint with the copper plane on the drain pins, the solder mask generation occurs automatically.


A final item to keep in mind is the width of the power traces. The absolute minimum power trace width must be determined by the amount of current it has to carry. For thermal reasons, this minimum width should be at least 0.020 inches. The use of wide traces connected to the drain plane provides a low-impedance path for heat to move away from the device.

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index