
P-Channel 12-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)		
	0.051 at V _{GS} = - 4.5 V	- 4.0		
- 12	0.070 at V _{GS} = - 2.5 V	- 3.5		
	0.106 at V _{GS} = - 1.8 V	- 3.0		

FEATURES

- Halogen-free According to IEC 61249-2-21
- TrenchFET® Power MOSFETs: 1.8 V Rated

Ordering Information: Si2335DS-T1-E3 (Lead (Pb)-free)

Si2335DS-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted						
Parameter	Symbol	5 s	Steady State	Unit		
Drain-Source Voltage		V _{DS}	- 12		V	
Gate-Source Voltage		V _{GS}	± 8			
Opation	T _A = 25 °C	- I _D	- 4.0	- 3.2		
Continuous Drain Current (T _J = 150 °C) ^{a, b}	T _A = 70 °C		- 3.3	- 2.6	•	
Pulsed Drain Current		I _{DM}	- 15		Α	
Continuous Source Current (Diode Conduction) ^{a, b}		I _S	- 1.6			
a h	T _A = 25 °C	P _D	1.25	0.75	W	
Maximum Power Dissipation ^{a, b}	T _A = 70 °C] ' ['] D	0.8	0.48	VV	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Marrian una lunation ta Analaianta	t ≤ 5 s	R _{thJA}	75	100		
Maximum Junction-to-Ambient ^a	Steady State	1 thJA 12	120	166	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	40	50		

Notes:

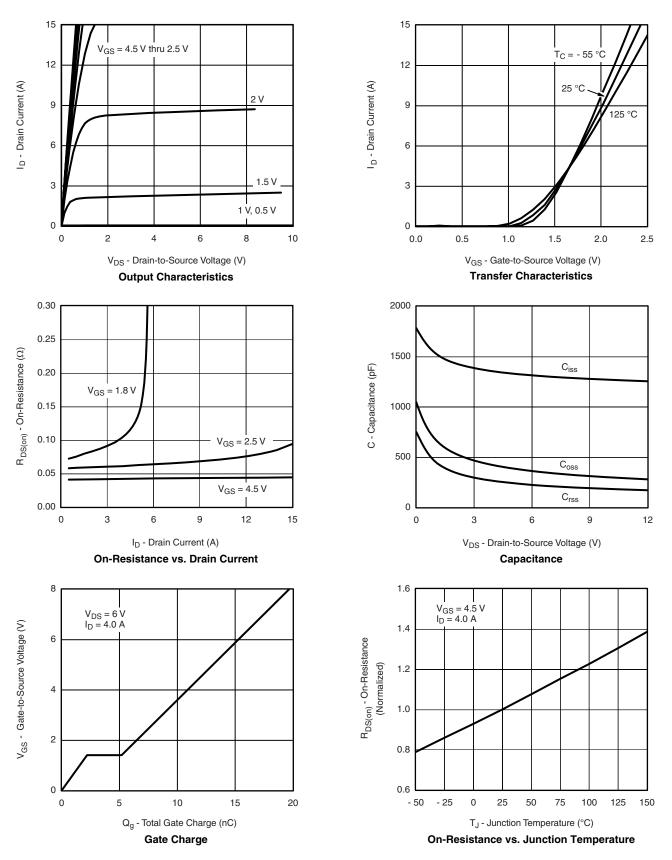
a. Surface mounted on 1" x 1" FR4 board.
b. Pulse width limited by maximum junction temperature.

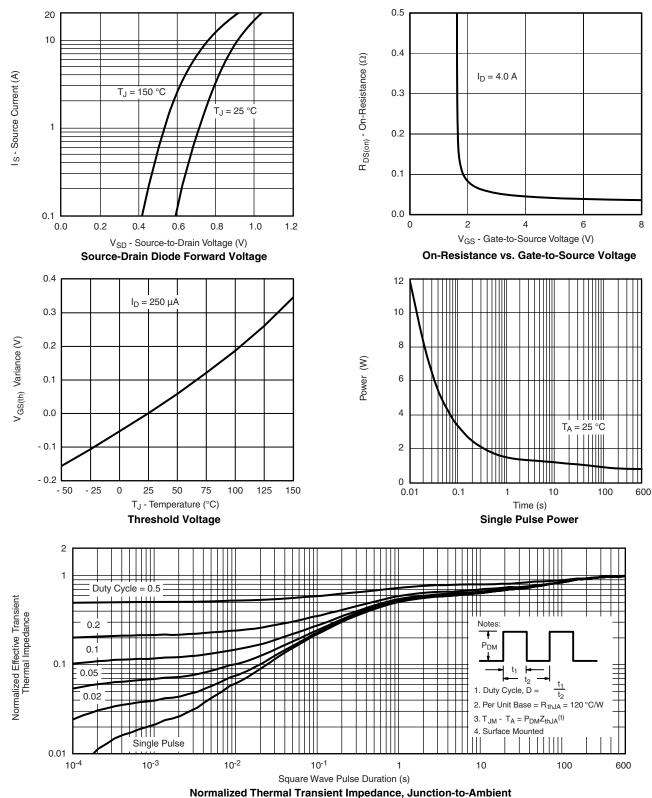
Si2335DS

Vishay Siliconix

SPECIFICATIONS T _J = 25 °C, unless otherwise noted							
-			Limits				
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = -10 \mu\text{A}$	- 12			V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	- 0.45			V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	l	V _{DS} = - 9.6 V, V _{GS} = 0 V			- 1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -9.6 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			- 10	μΑ	
0.01.0.10.10	1	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	V _{DS} ≤ - 5 V, V _{GS} = - 4.5 V - 15			_	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -2.5 \text{ V}$	- 6			A	
		V _{GS} = - 4.5 V, I _D = - 4.0 A		0.042	0.051		
Drain-Source On-Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -3.5 \text{ A}$		0.058	0.070	Ω	
		V _{GS} = - 1.8 V, I _D = - 2.0 A		0.082	0.106		
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 5 V, I _D = - 4.0 A		7		S	
Diode Forward Voltage	V _{SD}	I _S = - 1.6 A, V _{GS} = 0 V			- 1.2	V	
Dynamic ^b							
Total Gate Charge	Q_g			9	15		
Gate-Source Charge	Q_{gs}	V_{DS} = - 6 V, V_{GS} = - 4.5 V, $I_D \cong$ - 4.0 A		1.9		nC	
Gate-Drain Charge	Q_{gd}			1.5			
Input Capacitance	C _{iss}			1225			
Output Capacitance	C _{oss}	$V_{DS} = -6 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		260		pF	
Reverse Transfer Capacitance	C _{rss}			130			
Switching ^c							
Turn-On Time	t _{d(on)}			13.0	20		
Tanti-On Time	t _r	V_{DD} = - 6 V, R_L = 6 Ω		15	25	ne	
Turn-Off Time	t _{d(off)}	$\text{I}_\text{D}\cong\text{-}\ \text{1.0 A},\ \text{V}_\text{GEN}=\text{-}\ \text{4.5 V},\ \text{R}_\text{G}=\text{6}\ \Omega$		50	70	ns	
Turri-Oir Tiffie	t _f			19	35		

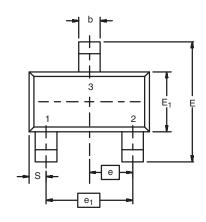
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

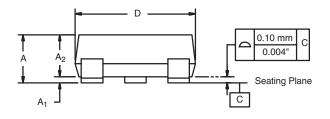

a. Pulse test: PW ≤ 300 μs, duty cycle ≤ 2 %.
b. For design aid only, not subject to production testing.
c. Switching time is essentially independent of operating temperature.

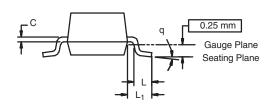

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Vishay Siliconix

VISHAY


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted




Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg271314.

Vishay Siliconix

SOT-23 (TO-236): 3-LEAD

Dim	MILLI	METERS	INCHES		
	Min	Max	Min	Max	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
С	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95 BSC		0.0374 Ref		
e ₁	1.90 BSC		0.0748 Ref		
L	0.40	0.60	0.016	0.024	
L ₁	0.64 Ref		0.025 Ref		
S	0.50 Ref		0.020 Ref		
q	3°	8°	3°	8°	
FCN: S-03946-Rev K 09-	lul-01	•			

ECN: S-03946-Rev. K, 09-Jul-01

DWG: 5479

Document Number: 71196 www.vishay.com 09-Jul-01

Mounting LITTLE FOOT® SOT-23 Power MOSFETs

Wharton McDaniel

Surface-mounted LITTLE FOOT power MOSFETs use integrated circuit and small-signal packages which have been been modified to provide the heat transfer capabilities required by power devices. Leadframe materials and design, molding compounds, and die attach materials have been changed, while the footprint of the packages remains the same.

See Application Note 826, Recommended Minimum Pad Patterns With Outline Drawing Access for Vishay Siliconix MOSFETs, (http://www.vishay.com/doc?72286), for the basis of the pad design for a LITTLE FOOT SOT-23 power MOSFET footprint. In converting this footprint to the pad set for a power device, designers must make two connections: an electrical connection and a thermal connection, to draw heat away from the package.

The electrical connections for the SOT-23 are very simple. Pin 1 is the gate, pin 2 is the source, and pin 3 is the drain. As in the other LITTLE FOOT packages, the drain pin serves the additional function of providing the thermal connection from the package to the PC board. The total cross section of a copper trace connected to the drain may be adequate to carry the current required for the application, but it may be inadequate thermally. Also, heat spreads in a circular fashion from the heat source. In this case the drain pin is the heat source when looking at heat spread on the PC board.

Figure 1 shows the footprint with copper spreading for the SOT-23 package. This pattern shows the starting point for utilizing the board area available for the heat spreading copper. To create this pattern, a plane of copper overlies the drain pin and provides planar copper to draw heat from the drain lead and start the process of spreading the heat so it can be dissipated into the

ambient air. This pattern uses all the available area underneath the body for this purpose.

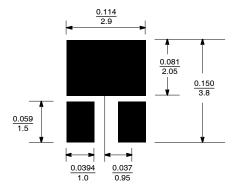
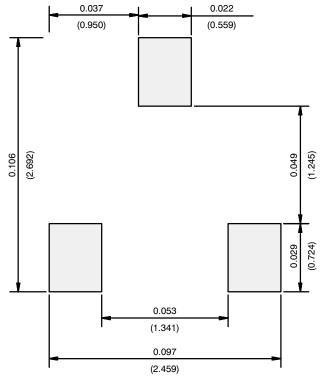


FIGURE 1. Footprint With Copper Spreading


Since surface-mounted packages are small, and reflow soldering is the most common way in which these are affixed to the PC board, "thermal" connections from the planar copper to the pads have not been used. Even if additional planar copper area is used, there should be no problems in the soldering process. The actual solder connections are defined by the solder mask openings. By combining the basic footprint with the copper plane on the drain pins, the solder mask generation occurs automatically.

A final item to keep in mind is the width of the power traces. The absolute minimum power trace width must be determined by the amount of current it has to carry. For thermal reasons, this minimum width should be at least 0.020 inches. The use of wide traces connected to the drain plane provides a low-impedance path for heat to move away from the device.

Document Number: 70739 26-Nov-03

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE